OBSERVATIONS ON THE HYPERBOLA

$$
y^{2}=60 x^{2}+4
$$

S.Vidhyalakshmi ${ }^{1}$,M.A.Gopalan ${ }^{2}$, S. Sumithra ${ }^{3}$, N.Thiruniraiselvi ${ }^{4}$
${ }^{1,2}$ Professor, Department of Mathematics, SIGC,Trichy
${ }^{3}$ M.phil student, Department of Mathematics, SIGC,Trichy
${ }^{4}$ Research Scholar, Department of Mathematics, SIGC, Trichy

Abstract

The binary quadratic equation $y^{2}=60 x^{2}+4$ is considered and a few interesting properties among the solutions are presented. Employing the integer solutions of the equation under consideration, a special Pythagorean triangle is obtained.

Index Terms- binary quadratic, integer solutions

2010 Mathematics Subject Classification : 11D09

I. INTRODUCTION

The binary quadratic equation of the form $\mathrm{y}^{2}=D x^{2}+1$ where D is non-square positive integer has been studied by various mathematicians for its nontrivial integral solutions when D takes different integral values[1-4]. For an extensive review of various problems, one may refer [5-23]. In this communication, yet another interesting hyperbola given by $y^{2}=60 x^{2}+4$ is considered and infinitely many integer solutions are obtained.
${ }^{1}$.S.Vidhyalaksmi,Professor,Sigc,Trichy,vidhyasigc@gmail.com
${ }^{2}$ M.A.Gopalan, Professor,Sigc,Trichy,mayilgopalan @ gmail.com
${ }^{3}$ S.Sumithra, M.Phil student, Sigc, Trichy,sumithrasssk @ gmail.com
${ }^{4}$ N.Thiruniraiselvi, \quad Research Scholar, Sigc, Trichy,nts.maths.ig@gmail.com

II. METHOD OF ANALYSIS

Consider the binary quadratic equation

$$
\begin{equation*}
y^{2}=60 x^{2}+4 \tag{1}
\end{equation*}
$$

with the least positive integer solutions $\mathrm{X}_{0}=1, y_{0}=8$

To obtain the other solutions of (1), consider the Pellian equation

$$
y^{2}=60 x^{2}+4
$$

whose general solution $\left(\widetilde{\mathrm{x}}_{\mathrm{n}}, \widetilde{\mathrm{y}}_{\mathrm{n}}\right)$ is given by,

$$
\tilde{\mathrm{x}}_{\mathrm{n}}=\frac{g}{4 \sqrt{15}} \quad \text { and } \quad \tilde{\mathrm{y}}_{\mathrm{n}}=\frac{f}{2}
$$

in which,

$$
\begin{aligned}
& f=(31+4 \sqrt{60})^{n+1}+(31-4 \sqrt{60})^{n+1} \\
& g=(31+4 \sqrt{60})^{n+1}-(31-4 \sqrt{6} 0)^{n+1}
\end{aligned}
$$

where $n=-1,0,1,2, \ldots$
Applying Brahmagupta lemma between the solutions of $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and $\left(\tilde{\mathrm{x}}_{\mathrm{n}}, \tilde{\mathrm{y}}_{\mathrm{n}}\right)$, the general solution of (1) is found to be

$$
\begin{align*}
& \mathrm{x}_{\mathrm{n}+1}=\frac{f}{2}+\frac{2 g}{\sqrt{15}} \tag{2}\\
& \mathrm{y}_{\mathrm{n}+1}=4 f+\sqrt{15} g \tag{3}
\end{align*}
$$

where $n=-1,0,1,2, \ldots$.
Thus (2) and (3) represent non-zero distinct integral solutions of (1) which represents a hyperbola. The recurrence relations satisfied by the values of x and y are respectively

$$
x_{n+3}-62 x_{n+2}+x_{n+1}=0
$$

$$
y_{n+3}-62 y_{n+2}+y_{n+1}=0
$$

A few numerical examples are presented in the table below.

n	$\mathrm{X}_{\mathrm{n}+1}$	$\mathrm{y}_{\mathrm{n}+1}$
-1	1	8
0	63	848
1	3905	30248
2	242047	1874888
3	46845617	116212808
4	929944511	7203319208

A few interesting relations among the solutions are presented below.

1. $\mathrm{X}_{\mathrm{n}+1}$ is always odd and $\mathrm{y}_{\mathrm{n}+1}$ is always even.
2. $\mathrm{x}_{\mathrm{n}+1} \equiv 1(\bmod 2)$
3. $y_{n+1} \equiv 0(\bmod 8)$
4. $\mathrm{x}_{3 \mathrm{n}+1} \equiv 0(\bmod 3)$
5. $24 y_{2 n+2}-180 x_{2 n+2}+12$ is a Nasty number.
6. $4 y_{2 n+2}-30 x_{2 n+2}+2$ is a quadratic number.
7. $4 \mathrm{y}_{3 \mathrm{n}+3}-30 x_{3 n+3}+3\left(4 y_{n+1}-30 x_{n+1}\right)$ is a Cubic integer.
$60\left(4 y_{3 \mathrm{n}+3}-30 x_{3 n+3}+12 y_{n+1}-90 x_{n+1}\right)$
8. $-900\left(8 x_{n+1}-y_{n+1}\right)^{2}\left(4 y_{n+1}-30 x_{n+1}\right)$
$=240\left(4 y_{n+1}-30 x_{n+1}\right)$
9. $\mathrm{x}_{\mathrm{n}+2}=4 y_{n+1}+31 x_{n+1}$.
10. $\mathrm{x}_{\mathrm{n}+3}=248 y_{n+1}+1921 x_{n+1}$.
11. $\mathrm{y}_{\mathrm{n}+2}=31 y_{n+1}+240 x_{n+1}$.
12. $\mathrm{y}_{\mathrm{n}+3}=1921 y_{n+1}+14880 x_{n+1}$.
13. $4 \mathrm{y}_{2 \mathrm{n}+2}-30 x_{2 n+2}+2=\left(4 y_{n+1}-30 x_{n+1}\right)^{2}$.
$4 y_{3 n+3}-30 x_{3 n+3}+3\left(4 y_{n+1}-30 x_{n+1}\right)$
14. $=\left(4 y_{n+1}-30 x_{n+1}\right)^{3}$.
15. $\mathrm{x}_{\mathrm{n}+3} y_{n+1}-x_{n+1} y_{n+3}=992$.
16. $60 \mathrm{x}_{\mathrm{n}+1} x_{n+3}-y_{n+1} y_{n+3}=-7684$
17. $\mathrm{x}_{\mathrm{n}+2} y_{n+1}-x_{n+1} y_{n+2}=16$.
18. $\left.60 \mathrm{x}_{\mathrm{n}+2} x_{n+1}-y_{n+1} y_{n+2}=-124\right)$

III. REMARKABLE OBSERVATIONS

1. Define $\quad X=4 y_{n+1}-30 x_{n+1}$ and $\mathrm{Y}=8 \mathrm{x}_{\mathrm{n}+1}-y_{n+1}$, then the pair (X, Y) satisfies the hyperbola $\mathrm{X}^{2}=15 Y^{2}+4$
2. Define $X=4 y_{2 n+2}-30 x_{2 n+2}+2$ and $\mathrm{Y}=8 \mathrm{x}_{\mathrm{n}+1}-y_{n+1}$, then the pair (X, Y) satisfiesthe parabola $15 \mathrm{Y}^{2}=X-4$
3. Define
$\mathrm{X}=x_{n+2}-61 x_{n+1}$ and $\mathrm{Y}=8 \mathrm{x}_{\mathrm{n}+1}-y_{n+1}$, then the pair (X, Y) satisfies the hyperbola $\mathrm{X}^{2}=15 Y^{2}+4$
4. Let $\mathrm{p}=\left(\mathrm{x}_{\mathrm{n}+1}+\mathrm{y}_{\mathrm{n}+1}\right)$, $\mathrm{q}\left(=\mathrm{x}_{\mathrm{n}+1}\right)$ be any two non-zero distinct positive integers , note that $\mathrm{p}>\mathrm{q}$.

Treat p, q as the generaters of the Pythagorean triangle $T(\alpha, \beta, \gamma)$, where $\alpha=2 p q$

$$
\beta=p^{2}-q^{2}, \gamma=p^{2}+q^{2}
$$

Let A, P are triangle.In the above A, P represent the area and perimeter of the Pythagorean triangle T, then the following relations are observed:
(i) $\alpha-30 \beta+29 \gamma=-4$
(ii) $\beta-\frac{4 A}{P}-30(\gamma-\beta)=4$
(iii) $31 \alpha-\gamma+4=\frac{120 A}{P}$

IV. CONCLUSION

In this paper, infinitely many non-zero distinct integer solutions for the hyperpola $y^{2}=60 x^{2}+4$ are obtained. As binary quadratic diophantine equations are rich in variety, one may search for integer solutions and the corresponding properties for other choices of binary quadratic diophantine equations.

REFERENCES

1. Dickson LE.History of Theory of Numbers and Diophantine Analysis,Vol 2,Dove publications,New York 2005.
2. Mordell LJ. Diophantine Equations" Academic Press, Newyork 1970.
3. Carmicheal RD.The Theory of Numbers and Diophantine Analysis , Dover publications,,Newyork 1959.
4. Gopalan MA,Geetha D. Lattice points on the Hyperboloid of two sheets $\mathrm{x}^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$ Impact J Sci Tech 2010;4:23-32.
5. Gopalan MA ,Vidhyalakshmi S,Kavitha A,Integral points on the Homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$,The Diophantus J Math 2012;1(2):127-136.
6. Gopalan MA,Vidhyalakshmi S, Sumathi G.Lattice points on the Hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$. Diophantus J Math 2012; 1(2): 109-115.
7. Gopalan MA,Vidhyalakshmi S,Lakshmi K. Integral points on the Hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$. Diophantus J Math 2012; 1(2): 99-107.
8. Gopalan MA,Vidhyalakshmi S, Mallika S.Observations on Hyperboloid of one sheet $x^{2}+2 y^{2}-z^{2}=2$. Bessel J Math 2012; 2(3): 221-226.
9. Gopalan MA ,Vidhyalakshmi S,Usha Rani TR , Mallika S,Integral points on the Homogeneous cone $6 z^{2}+3 y^{2}-2 x^{2}=0$,The Impact J Sci Tech 2012;6(1):713.
10. Gopalan MA ,Vidhyalakshmi S,Sumathi G,Lattice points on the Elliptic parabolid $\quad z=9 x^{2}+4 y^{2}$,Advances in Theoretical and Applied Mathematics 2012;m7(4):379-385
11. Gopalan MA ,Vidhyalakshmi S,Usha Rani TR,Integral points on the non- homogeneous cone $2 z^{2}+4 x y+8 x-4 z=0$, Global Journal of Mathamatics and Mathamatical sciences 2012;2(1):61-67
12. Gopalan MA ,Vidhyalakshmi S,Lakshmi K.,Lattice points on the Elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$, Bessel J of Math 2013; 3(2): 137-145.
13. Gopalan MA ,Vidhyalakshmi S,Uma Rani J, Integral points on the Homogeneous cone $4 y^{2}+x^{2}=37 z^{2}$,Cayley $\quad \mathrm{J}$ of Math 2013;2(2):101-107.
14. Gopalan MA,Vidhyalakshmi S, Kavitha A. Observations on the Hyperboloid of
two sheets $7 x^{2}-3 y^{2}=z^{2}+z(y-x)+4$. International Journal of Latest Research in Science and technology 2013; 2(2): 8486.
15. Gopalan MA ,Sivagami B. Integral points on the homogeneous cone $z^{2}=3 x^{2}+6 y^{2}$. ISOR Journal of Mathematics 2013; 8(4): 24-29.
16. Gopalan MA,Geetha V. Lattice points on the homogeneous cone $z^{2}=2 x^{2}+8 y^{2}-6 x y$. Indian journal of Science 2013; 2: 93-96.
17. Gopalan MA, Vidhyalakshmi S,Maheswari D. Integral points on the homogeneous cone $35 z^{2}=2 x^{2}+3 y^{2}$. Indian journal of Science 2014; 7: 6-10.
18. Gopalan MA, Vidhyalakshmi S ,Umarani J. On the Ternary Quadratic Diophantine Equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2}$. Sch J Eng Tech 2014; 2(2A): 108-112.
19. Meena K,Vidhyalakshmi S, Gopalan MA , Priya IK. Integral points on the cone $3\left(x^{2}+y^{2}\right)-5 x y=47 z^{2}$. Bulletin of Mathematics and statistic Research 2014; 2(1): 65-70.
20. Gopalan MA, Vidhyalakshmi S ,Nivetha S.On Ternary Quadratic Diophantine Equation $4\left(x^{2}+y^{2}\right)-7 x y=31 z^{2}$. Diophantus J Math 2014; 3(1): 1-7.
21. Meena K,Vidhyalakshmi S, Gopalan MA ,Thangam SA. Integral solutions on the homogeneous cone $28 z^{2}=4 x^{2}+3 y^{2}$. Bulletin of Mathematics and statistic Research 2014; 2(1): 47-53.
22. Santhi J ,Gopalan MA, Vidhyalakshmi. Lattice points on the homogeneous cone $8\left(x^{2}+y^{2}\right)-15 x y=56 z^{2}$. Sch Journal of Phy Math Stat 2014; 1(1): 29-32.
23. Meena S,Gopalan MA, Vidhyalakshmi S ,Thiruniraiselvi N.Observations on the Ternary Quadratic Diophantine Equation
$x^{2}+9 y^{2}=50 z^{2}$.International Journal of Applied Research 2015; 1(2): 51-53.
