
© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101625 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 74

Survey Paper on Designing of Portdog Using FPGA

Nilesh U. Kagde
1
, Prof. Nandini Dhole

2
, Prof. Chittaranjan P. Mahajan

2

1
Department of Electronics & Telecommunication, R.M.D Sinhgad School of Engineering, Pune, India

2
Director, Dolphin labs, Pune

Abstract- Embedded system is having very important role in

today’s fastly developing in automation and industrial area. We

can say embedded system is “Computer in Disguise” system,

carrying along a computer or processor based system that which

cannot be programmed by users. . hardware, software and

firmware are some major components of embedded system and

“Time to Market” is the key for successful launching of the

product in today’s rapid development world for capturing the

market. The current trend for handheld device is to provide the

users various embedded multimedia applications. These new

applications constrain architecture developers to embed

dedicated hardware accelerators in order to meet the application

timing requirements. However the use of dedicated monolithic

hardware accelerators is onerous to achieve due to physical and

economical constraints. When the multimedia applications share

common functionalities, monolithic hardware accelerators could

be split into smaller accelerators in order to cut down

redundancy in hardware implemented functionalities and save

silicon area. Nevertheless lowering the granularity of accelerator

will increase synchronization calls between the main processor,

and the accelerators. Hardware acceleration is important for any

handheld device in today’s market.

This paper presents one of the new concept of portdog for the

hardware acceleration. To make the processor faster and to

accelerate its processing speed we have to do multitasking. So for

certain processes we can use this portdog for checking the

outputs of real time system. For that particular time period we

can use our main processor for some another task or we can us

sleep mode for main processor. For this portdog can be used.

Portdog can work as like co processor of the main processor.

Using Xilinx the coading of this portdog can be completed and it

can be implemented using FPGA Spartan 3E kit.

Index Terms- Portdog, Real time system, microprocessor,

embedded system.

I. INTRODUCTION

Hard real-time operating systems are mainly designed for

uniprocessors. Time constrains are most important in hard

real time system. If task cannot completed in its given time

total system may get failure. System fails in such conditions.

This system is used when task or event should be processed

within a strict deadline. Such strong guarantees are required in

systems for which not reacting in a certain interval of time

would affect the system and cause great loss. Some examples

of hard real-time systems are such as traffic control, industrial

control, robotics, avionics, etc [1].

We can say that, An embedded system is ‘system with

constraint’. Design and development of highly constraints

system is major challenge. Some constraints of embedded

system are like small size, low weight is constraint which is

applicable in hand held electronics, transportation applications

and other devices. Another is low power that is device should

use minimum power which is for battery powered

applications; limited cooling etc. harsh environment is

constraint which we have to consider in power fluctuation, RF

interference, lighting, heating, vibration, shock etc. Many

embedded systems are interactive and processor based system.

Processor architectures are designed and that are developed to

reduce system development time and to improve performance,

throughput, energy saving and total system efficiency.

Embedded application tasks in software are also very critical

aspect. Due to this reason it specifies the need to look after co-

design aspect. RISC architecture is dominating and it support

for lot of applications designing in embedded systems. The

risk architecture has less powerful instruction sets.

The basic fundamental study shows that the design and

operations of embedded systems are separately partitioned in

to software and hardware. This aspects suffers with various

trade-offs in design metrics such as to make system flexible

needed some more tasks to be performed in the software. So

the size of software increases. If size increase memory

requirement for that is also increases which in turn increase

the size of hardware required for that memory, power

consumption of the hardware and cost of total system. The

system throughput is affected by various inherent latencies

generated due to processor architecture. To avoid this situation

various steps are to be taken like pipeline concept, Brach

perdition etc. but still some challenges are present which

required to pay attention like size of hardware and weight

solution is reduction in memory requirement reduced OS

footprints etc. Other is speed or response time solution for this

is custom instruction set, hardware acceleration, multi core

technique etc.

By using the hardware acceleration we can improve the speed

of system. Hardware implementation of system is faster than

that of software. So many systems are now building on

hardware so hardware acceleration is needed in such system.

To make the processor faster and to accelerate its processing

speed we have to do multitasking. So for certain processes we

can use this portdog for checking the outputs of real time

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101625 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 75

system. For that particular time period we can use our main

processor for some another task or we can us sleep mode for

main processor. For this portdog can be used. Portdog can

work as like co processor of the main processor. Using Xilinx

the coding of this portdog can be completed and it can be

implemented using FPGA Spartan 3E kit.

Portdog can be used to improve the hardware acceleration. It

is itself hardware so its speed is much faster than the software.

Due to this it is having much more scope in future.

II. HARDWARE ACCELERATION

A. Embedded system

An embedded system is an engineering artifact which is

involving computation that is subject to physical constraints.

The physical constraints can be arises by two different kinds

of interactions of computational processes with the real

physical world, one is reaction to a physical environment and

another is execution on a physical platform. Accordingly, the

two types of physical constraints are reaction constraints and

execution constraints. Common reaction constraints specify

some of the deadlines, throughput, and jitter; they originate

from the behavioral requirements of the system. Common

execution constraints put bounds on available processor

speeds, power, and hardware failure rates; these are originated

from the implementation requirements of the system. Reaction

constraints can be studied in control theory and the execution

constraints can be studied in computer engineering. Gaining

control of the interplay of computation with the above both

kinds of constraints, so as to meet a given set of requirements,

is the key to embedded systems design. [2]

B. Embedded systems design

Embedded systems consist of different parts such as hardware,

software, and an environment for which system is to be

designed. These are in common with most computing systems.

However, there is an essential difference between embedded

and other computing systems: since embedded systems

involve computation that is subject to physical constraints, the

powerful separation of computation (software) from

physicality (platform and environment), which has been one

of the central ideas enabling the science of computing, does

not work for embedded systems. Instead, the design of

embedded systems requires a holistic approach that integrates

essential paradigms from hardware and software design and

control theory in a consistent manner. We can say that this

approach may not be an extension of hardware and software

design, but must be based on a new foundation that subsumes

techniques from both worlds. Due to this current design

theories and practices for hardware and software, are tailored

towards the individual properties of these two domains;

indeed, they often use abstractions that are diametrically

opposed. We have to look at the abstractions that are

commonly used in hardware design, and those that are used in

software design.

C. Hardware acceleration in embedded system

Now days the handheld devices have to provide the users

various embedded multimedia applications in single device.

So the new applications constrain architecture developers to

embed the dedicated hardware accelerators for the meeting of

the timing requirements for particular application. So the use

of particular dedicated monolithic hardware accelerators is

onerous to achieve due to physical as well as economical

constraints. When some common functionality are shared by

the more multimedia applications, that time monolithic

hardware accelerators could be spread into different smaller

accelerators so that it cut down the redundancy in hardware

implemented functionalities and so that it saves silicon area.

Nevertheless it lowering the granularity of accelerator will

increase synchronization calls which are between main

processor and the accelerators.

Handheld devices integrate more and more functionality, and

providing more multimedia applications is becoming a de

facto requirement. Solutions are therefore needed for

accelerating these computationally intensive applications in

order to fulfill the requirements. The main acceleration

approaches can be classified into two categories.

1. A short portion of code is accelerated by extending the

processor instruction set with a corresponding

instruction. In this case the new instruction has typical

execution latency from 1 to 4 cycles, thus limiting the

size of the accelerated software. Developing longer

instruction would make the pipeline execution flow

inefficient.

2. Full application functionality is accelerated with a

monolithic hardware accelerator used as peripheral

device. The hardware accelerator is then synchronized

with the application by the means of interrupts. In this

case the hardware accelerator has typical execution

latency from several thousand cycles up to several

hundreds of thousands of cycles. However dedicated

monolithic hardware accelerators are onerous to achieve

due to physical and economical constraints. [3]

The use of fine grained hardware accelerators has the

advantage of saving silicon area by allowing collaborative use

of common accelerated functionalities among several

applications, thus cutting down implementation redundancy

over several accelerators.

III. PROPOSED CONCEPT OF PORTDOG

Hardware acceleration is important factor in design of

embedded real time applications. In these devices time

constraints for completion of tasks or events in the system

speed of processor should be high. Many time processors have

to check the inputs which are from real time physical system

or environment. So that for that particular task processor get

busy and it cannot Handel other task at that time. So that

energy loss takes place in system. Total system will need more

energy. To avoid this situation portdog concept is proposed in

this paper. It will work like dog. As dog give signal to human

in his language if thief is around same way this portdog will

give signal if some change occurs as per our desired change in

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101625 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 76

the real time physical system. So that this portdog can be used

as coprocessor of the main processor. This will continuously

check for the input signal from the real time system which we

want to control. By continuous checking of input signal if

some change occurs then this portdog will give output signal

which we can use as control signal for the main processor.

This protdog is to be implemented on hardware so that its

speed will be more than that of software because software

takes more time to execute program that that of hardware.

Hardware execution is much faster than software so that

acceleration and speed of system get increase and that is most

important for today’s rapidly development in embedded

system devices. Due to this efficiency of system increase and

also less power is required. So this portdog concept will

increase the efficiency of system, save the power of system so

that energy consumption will be reduced. This concept is

shown in below figure 1.

Figure 1 Conceptual block diagram of Portdog

[Courtesy Mr. Chittaranjan Mahajan, Dolphin labs, Pune]

Figure 1 shows the basic concept of portdog. Here we can

measure the given input with our fixed input. Depend upon

that we can give output as greater than, less than or equal to.

So depend on our requirement we can use any one or all

signals for our controlling system. In this port dog we can also

check the status of ports. Due to this we can make our main

system in sleep or ideal mode as per requirement and so that

power consumption of system will be less. If we want we can

assign another task to system during the period of this

checking time. We our required signal if there from portdog

that time we can bring our system in active mode. Due to this

power consumption will be reduced and efficiency of system

will be increase.

IV. INTRODUCTION TO FPGA

This proposed portdog can be implemented in FPGA using

Xilinx Spartan 3E family. Coding for this portdog can be done

in Xilinx VHDL language. This is the future work of this

paper. A field-programmable gate array (FPGA) is an

integrated circuit designed to be configured by a customer or a

designer after manufacturing – hence "field-programmable".

The FPGA configuration is generally specified using a

hardware description language (HDL), similar to that used for

an application-specific integrated circuit (ASIC) (circuit

diagrams were previously used to specify the configuration, as

they were for ASICs, but this is increasingly rare).

Contemporary FPGAs have large resources of logic gates and

RAM blocks to implement complex digital computations. As

FPGA designs employ very fast I/Os and bidirectional data

buses it becomes a challenge to verify correct timing of valid

data within setup time and hold time. Floor planning enables

resources allocation within FPGA to meet these time

constraints. FPGAs can be used t implement any logical

function that an ASIC could perform. The ability to update the

functionality after shipping, partial re-configuration of a

portion of the design and the low non recurring engineering

costs relative to an ASIC design (notwithstanding the

generally higher unit cost), offer advantages for many

applications.

Figure 2 FPGA from Xilinx

FPGAs contain programmable logic components called "logic

blocks", and a hierarchy of reconfigurable interconnects that

allow the blocks to be "wired together" – somewhat like many

(changeable) logic gates that can be inter-wired in (many)

different configurations. Logic blocks can be configured to

perform complex combinational functions, or merely simple

logic gates like AND and XOR. In most FPGAs, the logic

blocks also include memory elements, which may be simple

flip-flops or more complete blocks of memory. Some FPGAs

have analog features in addition to digital functions. The most

common analog feature is programmable slew rate and drive

strength on each output pin, allowing the engineer to set slow

rates on lightly loaded pins that would otherwise ring or

couple unacceptably, and to set stronger, faster rates on

heavily loaded pins on high-speed channels that would

otherwise run too slowly. Another relatively common analog

feature is differential comparators on input pins designed to be

connected to differential signaling channels. A few "mixed

signal FPGAs" have integrated peripheral analog-to-digital

converters (ADCs) and digital-to-analog converters (DACs)

with analog signal conditioning blocks allowing them to

operate as a system-on-a-chip. Such devices blur the line

between an FPGA, which carries digital ones and zeros on its

internal programmable interconnect fabric, and field-

programmable analog array (FPAA), which carries analog

values on its internal programmable interconnect fabric.

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Circuit_diagram
http://en.wikipedia.org/wiki/Circuit_diagram
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/Floor_planning
http://en.wikipedia.org/wiki/Partial_re-configuration
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
http://en.wikipedia.org/wiki/Slew_rate
http://en.wikipedia.org/w/index.php?title=Drive_strength&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Drive_strength&action=edit&redlink=1
http://en.wikipedia.org/wiki/Electrical_resonance
http://en.wikipedia.org/wiki/Coupling_%28electronics%29
http://en.wikipedia.org/wiki/Differential_signaling
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/System-on-a-chip
http://en.wikipedia.org/wiki/Field-programmable_analog_array
http://en.wikipedia.org/wiki/Field-programmable_analog_array

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101625 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 77

V. CONCLUSION

This paper has presented the importance of hardware

acceleration for today’s rapidly developing embedded system

devices. Speed is important factor of the system. So that

hardware should be work fast for better efficiency of the

system. Hardware acceleration is most important for this. For

increasing the efficiency of processor we can use portdog for

some part of the input signal checking and its controlling.

Protdog can be used as coprocessor of the main processor.

This will help in increasing the hardware acceleration. This

can be implemented using FPGA platform on Xilinx Spartan

3E family.

VI. ACKNOWLEDGEMENT

This proposed concept of portdog is part of patent numbered

“4139/MUM/2013” dated “31/12/2013” by “Chittaranjan

Pramod Mahajan, Pune”(Director, Dolphin labs Pune), Related

to “Port dog/ Peripheral dog to monitor ports/ on chip

peripherals present on microcontroller”.

REFERENCES

[1] Andre Nogueira, Mario Calha, “Predictability And

Efficiency In Contemporary Hard RTOS For

Multiprocessor Systems”, 17th IEEE International

Conference on Embedded and Real-Time Computing

Systems and Applications.

[2] Thomas A. Henzinger and Joseph Sifakis, “The

Embedded System Design Challenge”.

[3] Sebastien Lafond, Johan Lilius, “Interrupt Costs in

Embedded System with Short Latency Hardware

Accelerators”, 15th Annual IEEE International

Conference and Workshop on the Engineering of

Computer Based Systems.

[4] Scoot Mahlke, Rajiv Ravindran et.al, “Bitwidth

Congnizant Architecture Synthesis Of Custom Hardware

Acceleration”, IEEE Transactions On Computer-Aided

Design Of Integrated Circuits And Systems, Vol. 20, No.

11, November 2001.

[5] Khai Lik, Khoo & Mohd. Fadzil Ain, Chee Hak, Teh &

Weng Li, Leow, “Scable Storage Architecture In

Modular Hardware Accelerator”, 2011 IEEE Symposium

on Industrial Electronics and Applications (ISIEA2011),

September 25-28, 2011, Langkawi, Malaysia.

[6] Arnaldo S. R. Oliveira, Luís Almeida and António de

Brito Ferrari, “The ARPA-MT Embedded SMT

Processor and Its RTOS Hardware Accelerator”, IEEE

transactions on industrial electronics, vol. 58, no. 3,

March 2011.

[7] Joao Bispo, Nuno Paulino, Joao M. P. Cardoso and Joao

C. Ferreira, “Transparent Trace-Based Binary

Acceleration for Reconfigurable HW/SW Systems”,

IEEE transactions on industrial informatics, vol. 9, no. 3,

August 2013.

[8] Tran Nguyen Bao Anh, Su-Lim Tan, “Survey and

performance evaluation of real-time operating systems

(RTOS) for small microcontrollers”.

[9] Jianjun Li, LihChyun Shu, Jian-Jia Chen and Guohui Li,

“Energy-Efficient Scheduling in Nonpreemptive Systems

With Real-Time Constraints”, IEEE transactions on

systems, man, and cybernetics: systems, vol. 43, no. 2,

march 2013.

[10] Santhi Baskaran1 and P. Thambidurai2, “Energy

Efficient Scheduling For Real-Time Embedded Systems

With Precedence And Resource Constraints”,

International Journal of Computer Science, Engineering

and Applications (IJCSEA) Vol.2, No.2, April 2012.

[11] Ravindra Jejurikar, Rajesh Gupta, “Energy Aware Non-

Preemptive Scheduling for Hard Real-Time Systems”.

[12] Santhi Baskaran1 and P. Thambidurai2, “Energy

Efficient Real-Time Scheduling in Distributed Systems”,

IJCSI International Journal of Computer Science Issues,

Vol. 7, Issue 3, No 4, May 2010.

