
© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 150

AGILE METHODOLOGY IN SOFTWARE

DEVELOPMENT

Shivangi Shandilya, Surekha Sangwan, Ritu Yadav

Dept. of Computer Science Engineering

Dronacharya College Of Engineering, Gurgaon

Abstract- Looking at the software engineering principles

from a historical perspective, we can see how the

software processing methodologies evolved since past 50

years, but probably the most discernible exchange to

software business in recent years has been the

introduction of evince "Agile”. Most software

companies nowadays aim to produce valuable software

in short time period with minimal costs, and within

unstable, changing environments. As numerous areas

have overblown, there is a requirement to realize the

components and narration, as easily as how the agile

methodologies are diverse from the traditional one.

Nimble practices to develop software projects are

rattling hot and are advantageously glorious today.

Agile Methodologies were thus introduced to meet the

new requirements of the software development

companies. Methods like SCRUM, Extreme

programming (XP), Feature driven Development

(FDD), Adaptive software development (ASD) etc. are

increasingly being used to develop software using an

adaptation approach rather than a predictive one. But,

there is a scarcity of the resources which describe on

how these resources can be integrated with the agile

methodologies. This paper presents a review of three

agile approaches including Extreme Programming,

Agile Modeling, and SCRUM, describes the differences

between them and recommends when to use them. This

paper has the following structure: Section 2 briefs the

history. Section 3 explains the evolvement of software

development towards agile methodologies, and presents

the values and concepts of agile development. It also

covers the main and most used agile methodologies.

Section 4 describes the limitations to apply agile

methodologies, and the last section concludes the paper.

I. INTRODUCTION

As we notice, software development is expanding.

Software has merged into many diverse fields, and is

becoming more complex. Changing requirements

from customers is making it even more difficult. Old

software development approaches are not able to

satisfy the new requirements of the market in the best

way, anymore. Software development is an organized

thrives to deliver products in faster, better and

cheaper ways. There have been many studies and

suggestion in improving the development process.

Software development is an organized process that

thrives to deliver products in faster, better and

cheaper ways. There have been many studies and

suggestion in improving the development process. As

a result, new software development approaches are

evolved, as agile methodologies, mainly to solve such

problem. The new methodologies include

modifications to software development processes, to

make them more productive and flexible. To

overcome the fast changing organizational business

needs using traditional methods agile methods were

introduced. Agile methods aid in and focus on

developing solutions more quickly and efficiently.

Agile methods highlight customer satisfaction by

structuring the development process into iterations

where in each iteration produces sizeable amount of

working code and artifacts of interest to customers.

Agile software development (ASD) is a relative new

term within software engineering. Agile processes, or

development methods, represent an apparently new

approach for planning and managing software

development projects. ASD differs from traditional

approaches as it puts less emphasis on up-front plans

and strict plan-based control and more on

mechanisms for change management during the

project. Despite being a new approach, the

foundational principles of ASD are based on some

existing principles and theories, both from the field of

software engineering, information systems and others

such as production management. Our paper is

focused on the agile software development, agile

methods centered on current practices in industry.

Most commonly used methods will examined from

the angle of their applicability, strengths and

weaknesses and their adoption in industry. In order to

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 151

investigate and analyze, there is a need to compare

the issues in the literature, research studies and

industry. This will lead us to find benefits, limitations

and difficulties in transition from traditional to agile

software development.

II. HISTORY AND BACKGROUND

The software development methodology (also known

as SDM) framework didn't emerge until the 1960s.

According to Elliott (2004) the systems development

life cycle (SDLC) can be considered to be the oldest

formalized methodology framework for

building information systems. The main idea of the

SDLC has been "to pursue the development of

information systems in a very deliberate, structured

and methodical way, requiring each stage of the life

cycle from inception of the idea to delivery of the

final system, to be carried out rigidly and

sequentially within the context of the framework

being applied. The main target of this methodology

framework in the 1960s was "to develop large scale

functional business systems in an age of large scale

business conglomerates. Information systems

activities revolved around heavy data

processing and crunching routines".

Background Agility, for a software development

organization, is the power of software to choose and

react expeditiously and fittingly to various changes in

its surround and to the demands imposed by this

surround. An agile process is one that readily

embraces and supports this degree of flexibility. So,

it is not simply about the size of the process or the

speed of delivery; it is mainly about flexibility. This

term was agreed during a big gathering when

seventeen of the developers of the “lightweight”

approaches to software development came together in

a workshop in early 2001. Previously, circumscribe

of assorted groups have independently developed

methods and practices to act to the changes they were

experiencing in software processing and

development.

Agile Software Development is presently an

emerging discipline in the field of Software

Engineering. It is presently advocated by many

software professionals. The Agile software

development principles that are followed and

advocated emerged from the traditional software

development principles and various experiences

based on the successes and failures in software

projects. According to, customers found it difficult to

define their needs because of the fast changing

technology and the companies using them in

products. New methods, now called agile methods

are were designed to define the changing

requirements in software environments. Traditional

methods refer to the older and commonly used

methods like the waterfall methods. These traditional

methods have often been criticized to be far from the

real ways software engineers functioning in

developing the software. Agile Software

Development emerged in February 2001 when a

group of software consultants signed the Agile

Software Development Manifesto. Agile methods

focus on the challenges of unpredictability of the real

world by relying on people and their creativity rather

than processes. The main theme in agile methods is

to promote and speed up responses to changing

environments, requirements and meeting the

deadlines. The agile manifesto states the main focus

of the agile development as the following: 1)

Individuals and interactions over processes and tools

2) Working software over comprehensive

documentation. 3) Customer collaboration over

contract negotiation. 4) Responding to change over

following a plan.

III. AGILE MATHODOLOGY

At the early years of software development, most of

the users’ requirements were fairly stable, and

development followed the plans without major

changes. However, as software development involved

more critical and dynamic industrial projects, new

difficulties emerged according to the growth of

companies. These difficulties include:

• Evolving requirements: customer requirements are

changing due to evolving business needs or

legislative issues. Most of the customers do not have

a clear vision about the specifications of their

requirements at the early stages. Some customers

realize what their true requirements are only when

they use an application that does not really meet their

needs. Another source of change comes from

experiences gained during the development.

• Customer involvement: lack of customer

involvement leads to higher chances of project

failure. Many companies usually do not allocate any

effort for customer involvement.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 152

• Deadlines and budgets: often, customers do not

accept failure. On the other hand, companies usually

offer low budgets, tight deadlines, while at the same

time, requiring high demands, and all of this is

because of competition in the markets.

• Miscommunications: one cause of the

misunderstanding of requirements is the

miscommunication between developers and

customers. For example, each party uses its own

jargon, and this leads to misunderstanding of

customer’s needs.

Agility in short means to strip away as much of the

heaviness, commonly associated with traditional

software development methodologies, as possible, in

order to promote quick response to changing

environments, changes in user requirements,

accelerate project deadlines, and the like. Agile

methodologies prefer software development over

documentation. Their philosophy is to deliver many

working versions of the software in short iterations,

then update the software according to customers’

feedback. Applying this philosophy will help to

overcome the problems mentioned earlier, by

welcoming changes, satisfying user requirements,

faster development, and at the end, users will have

just the system they need. Agile methodologies

include:

 • Extreme Programming

• Agile Modeling

• SCRUM

• Crystal methodologies family

• Feature-Driven Development

 • Adaptive Software Development

I. Extreme programming:-

 XP stands for extreme programming. It

concentrates on the development rather

than managerial aspects of soft- ware

projects. XP was designed so that

organizations would be free to adopt all

or part of the methodology.

 XP development XP projects start with

a release planning phase, followed by

several iterations, each of which

concludes with user acceptance testing.

When the product has enough features

to satisfy users, the team terminates

iteration and releases the software.

 Users write “user stories” to describe

the need the software should fulfill.

User stories help the team to estimate

the time and resources necessary to

build the release and to define user

acceptance tests. A user or a

representative is part of the XP team, so

he or she can add detail to requirements

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 153

as the software is being built. This

allows requirements to evolve as both

users and developers define what the

product will look like.

 To create a release plan, the team

breaks up the development tasks into

iterations. The release plan defines each

iteration plan, which drives the

development for that iteration. At the

end of an iteration, users perform

acceptance tests against the user stories.

If they find bugs, fixing the bugs

becomes a step in the next iteration.

 Iterative user acceptance testing, in

theory, can result in release of the

software. If users decide that enough

user stories have been delivered, the

team can choose to terminate the project

before all of the originally planned user

stories have been implemented.

II. Agile modeling:-

Modeling is an important step in software

development. It enables software developers to

think about complex issues before addressing

them in programming. Agile Modeling (AM)

was established by Scott Ambler in 2002. It is a

collection of values, principles, and practices for

modeling software that can be applied on a

software development project in an effective and

light-weight manner. Agile Modeling was built

to be adapted to, and used with existing

methodologies, as XP and RUP, aiming to allow

a developer to build a software system that truly

meets the customer’s needs. The values of AM,

which are considered to be an extension to the

values of XP include: communication,

simplicity, feedback, courage, and humility.

Humility means to admit that you may not know

everything; others may know things that you do

not know, and thus, they may provide useful

contribution to the project. Again, the principles

of AM are quite similar to those of XP, such as

assuming simplicity, embracing changes,

incremental change of the system, and rapid

feedback. In addition to these principles, AM

principles include the knowledge of the purpose

for modeling; having multiple effective models;

the content is more important than the

representation; keeping open and honest

communication between parties involved in the

development process; and finally, to focus on the

quality of the work. The practices of AM have

some commonalities with those of XP, too. An

agile modeler needs to follow these practices to

create a successful model for the system. AM

practices highlight on active stakeholder

participation; focus on group work to create the

suitable models; apply the appropriate artifact as

UML diagrams; verify the correctness of the

model, implement it and show the resulting

interface to the user; model in small increments;

create several models in parallel; apply modeling

standards; and other practices. Agile Model

Driven Development (AMDD) is the agile

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 154

version of model driven development. To apply

AMDD, an overall high level model for the

whole system is created at the early stage of the

project. During the development iterations, the

modeling is performed as planned per iteration.

Usually, AM is applied along with other

methodologies, such as Test Driven

Development (TDD), and Extreme Programming

(XP), to get the best results. AM basically

creates a mediator between rigid methodologies

and lightweight methodologies, by suggesting

that developers communicate architectures

through applying its practices to the modeling

process. In a nut, agile modeling defines a

collection of values, principles, and practices

which describe how to streamline the modeling

and documentation efforts. It is usually applied

in conjunction with agile implementation

techniques for good results.

III. Scrums:-

Scrum is an iterative and incremental agile

software development methodology for

managing product development. It defines "a

flexible, holistic product development strategy

where a development team works as a unit to

reach a common goal", challenges assumptions

of the "traditional, sequential approach" to

product development, and enables teams to self-

organize by encouraging physical co-location or

close online collaboration of all team members,

as well as daily face-to-face communication

among all team members and disciplines in the

project.

A key principle of scrum is its recognition that

during a project the customers can change their

minds about what they want and need (often

called "requirements churn"), and that

unpredicted challenges cannot be easily

addressed in a traditional predictive or planned

manner. As such, scrum adopts

an empirical approach—accepting that the

problem cannot be fully understood or defined,

focusing instead on maximizing the team's

ability to deliver quickly and respond to

emerging requirements.

SCRUM shares the basic concepts and practices

with the other agile methodologies, but it

comprises project management as part of its

practices. These practices guide the development

team to find out the tasks at each development

iteration. In addition to the practices defined for

agility, one main mechanism recommended by

SCRUM is to build a backlog. A backlog is a

place where one can see all requirements

pending for a project, sized based on complexity,

days or some other unit of measure the team

decides. Inside a product backlog, there is a

simple sentence for each requirement; something

that will be used by the team to start discussions

and putting details of what is needed to be

implemented by the team for that requirement.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 155

IV. LIMITATIONS OF AGILE

MATHODOLOGY

 Active user involvement and close

collaboration are required throughout the

development cycle. This is very engaging,

rewarding and ensures delivery of the right

product. It’s the fundamental principle in agile

that ensures expectations are well managed. And

since the definition of failure is not meeting

expectations, these are critical success factors for

any project. However these principles are very

demanding on the user representative’s time and

require a big commitment for the duration of the

project.

 Requirements emerge and evolve throughout the

development. This creates the very meaning of

agile – flexibility. Flexibility to change course as

needed and to ensure delivery of the right

product. There are two big flip sides to this

principle though. One is the potential for scope

creep, which we all know can create the risk of

ever-lasting projects. The other is that there is

much less predictability, at the start of the project

and during, about what the project is actually

going to deliver. This can make it harder to define

a business case for the project, and harder to

negotiate fixed price projects. Without the

maturity of a strong and clear vision, and the

discipline of fixing timescales and trading scope,

this is potentially very dangerous.

 Agile requirements are barely sufficient. This

eliminates wasted effort on deliverables that don’t

last (i.e. aren’t part of the finished product),

which saves time and therefore money.

Requirements are clarified just in time for

development and can be documented in much less

detail due to the timeliness of conversations.

However this can mean less information available

to new starters in the team about features and how

they should work. It can also create potential

misunderstandings if the teamwork and

communication aren’t at their best, and

difficulties for team members (especially testers)

that are used to everything being defined up front.

The belief in agile is that it’s quicker to refactor

the product along the way than to try to define

everything completely up front, which arguably is

impossible. And this risk is managed closely

through the incremental approach to development

and frequent delivery of product.

 Testing is integrated throughout the lifecycle.

This helps to ensure quality throughout the

project without the need for a lengthy and

unpredictable test phase at the end of the project.

However it does imply that testers are needed

throughout the project and this effectively

increases the cost of resources on the project.

This does have the effect of reducing some very

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 156

significant risks, that have proven through

research to cause many projects to fail. The cost

of a long and unpredictable test phase can, in my

experience of waterfall, cause huge unexpected

costs when a project over-runs. However there is

an additional cost to the project to adopt

continuous testing throughout.

 Frequent delivery of product and the need to sign

off each feature as done before moving on to the

next makes UAT (user acceptance testing)

continuous and therefore potentially quite

onerous. The users or product owner needs to be

ready and available for prompt testing of the

features as they are delivered and throughout the

entire duration of the project. This can be quite

time-consuming but helps drastically to ensure a

quality product that meets user expectations.

To get the advantages of applying agile

methodologies in the development, there is a set of

assumptions that are assumed to be true. To mention

some are: cooperation and face to face relation

between the customers and the development team;

evolving and changing requirements of the project;

developers having good individual skills and

experiences; in addition to many more. If these

assumptions do not apply to a software development

project, then it is better to look for other

methodologies to apply for the development process,

in order to get better results.

V. CONCLUSION

Software development methodologies have evolved

since the 1970s. Agile methodologies came into

existence after the need for a light way to do software

development in order to accommodate changing

requirements environment. Agile methodologies

provide some practices that facilitate communication

between the developer and the customer, and undergo

develop-deliver-feedback cycles, to have more

specific view of the requirements, and be ready for

any change at any time. The main aim of agile

methodologies is to deliver what is needed when it is

needed. Agile approaches are meant to increase

flexibility, agility and to be more adjusted to the

environment where software development projects

are present and working today. This is a contradiction

to large global project organizations with no

overview and multiple interdependencies that cannot

be effectively monitored. However, nothing speaks

against incorporating ideas and practices from agile

methods in order to increase agility even in large

projects though keeping in mind that the fundamental

conditions are different and that that needs to be fully

understood. The ideal approach would likely be to

break large projects into smaller projects which

would become more flexible. This idea is brought up

both by the interviewees, respondents of the survey

as well as recommended by the agile methodologists.

REFERENCES

[1] http://agilemethodology.org/

[2] http://www.serena.com/docs/repository/solut

ions/intro-to-agile-devel.pdf

[3] http://en.wikipedia.org/wiki/Crystal_Clear_(

software_development)

[4] http://en.wikipedia.org/wiki/Agile_modeling

[5] http://www14.informatik.tumuenchen.de/ko

nferenzen/Jass06/courses/3/presentations/Ag

ileModeling.pdf

