
© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101651 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 272

SORTING ALGORITHMS

Pooja Nayak, Rajat Wason, Sahil Mudgal

Student(b.tech VI
th

sem) Department of Computer science

Dronacharya College Of Engineering,Gurgaon-123506

Abstract- Sorting is an important data structure

operation, which makes easy searching, arranging and

locating the information. This paper includes all the types

of sorting algorithms and also their comparison.

Algorithms are the finite set of instructions. An algorithm

must be unambiguous. There are some properties of the

algorithms. Such as finiteness, definiteness, input, output,

effectiveness. In this we discuss about merge sort, bubble

sort, selection sort and quick sort.

I. INTRODUCTION

One of the basic problems of computer science is

ordering a list of items. There are a number of

solutions to this problem, known as sorting

algorithms . Some sorting algorithms are simple and

spontaneous, such as the bubble sort. Others, such as

the quick sort are enormously complex, but produce

super-fast results.

There are several elementary and advance sorting

algorithms. All sorting algorithm are problem

specific meaning they work well on some specific

problem and do not work well for all the problems.

All sorting algorithm are, therefore, appropriate for

specific kinds of problems. Some sorting algorithm

work on less number of elements, some are suitable

for floating point numbers, some are good for

specific range, some sorting algorithms are used for

huge number of data, and some are used if the list has

repeated values. We sort data either in statistical

order or lexicographical, sorting numerical value

either in increasing order or decreasing order and

alphabetical value like addressee key.

The formal definition of the sorting problem is as

follows:

Input: A sequence having n

numbers in some random order

(a1, a2, a3, ….. an)

Output: A permutation (a’1, a’2,

a’3, ….. a’n)

a’1 ≤ a’2 ≤ a’3 ≤ ….. a’n

For instance, if the given input of numbers is (59, 41,

31, 41, 26, 58), then the output sequence returned by

a sorting algorithm will be (26, 31, 41, 41, 58, 59).

Various other factors which include:

· The size of the array or sequence to be

sorted,

· The extent up to which the given input

sequence is already sorted,

· The probable constraints on the given input

values,

· The system architecture on which the sorting

operation will be performed,

· The type of storage devices to be used: main

memory or disks.

Almost all the available sorting algorithms can be

categorized into two categories based on their

difficulty. The complexity of an algorithm and its

relative effectiveness are directly correlated. A

standardized notation i.e. Big O(n), is used to

describe the complexity of an algorithm. In this

notation, the O represents the complexity of the

algorithm and n represents the size of the input data

values. The two groups of sorting algorithms are

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101651 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 273

O(n
2
), which includes the bubble, insertion, selection

sort and O(nlogn) which includes the merge, heap &

quick sort.

II. COMPARISON OF SORTING ALGORITHMS

 Time

Sort Avg. Best Worst Space Stabilit Remarks
 y

Bubble O(n^2) O(n^2) O(n^2) Constant Stable Always use a modified bubble sort
sort

Selection O(n^2) O(n^2) O(n^2) Constant Stable Even a perfectly sorted input requires
Sort scanning the entire array

Insertion O(n^2) O(n) O(n^2) Constant Stable In the best case (already sorted), every
Sort insert requires constant time

Merge O(n*logn O(n*logn O(n*logn Depends Stable On arrays, merge sort requires O(n)
Sort))) space; on linked lists, merge sort

 requires constant space

Quick O(n*logn O(n*logn O(n^2) Constant Stable Randomly picking a pivot value (or
Sort)) shuffling the array prior to sorting) can

 help avoid worst case scenarios such as
 a perfectly sorted array.

A. BUBBLE SORT :

Bubble sort is a basic sorting algorithm that performs

the sorting operation by iteratively comparing the

adjacent pair of the given data items and swaps the

items if their order is reversed. The worst case as well

as average case complexity of bubble sort is О(n
2
),

where n represents the total number of items in the

given array to be sorted.

ALGORITHM:

 Repeat Steps ii and iii for K=1 to N-1

 Set PTR = 1

 Repeat while PTR<= N-K

1) If DATA[PTR] > DATA[PTR+1],

then

2) Swap DATA[PTR] and

DATA[PTR+1]

3) Set PTR = PTR+1

 Exit.

1) Advantage: Simplicity and ease-of-

implementation

2) Disadvantage: Code inefficient

B. Selection Sort [Best/Worst: O(N^2)]

Scan all items and find the smallest. Swap it into

position as the first item. Repeat the selection sort on

the remaining N-1 items.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101651 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 274

ALGORITHM:

 Repeat Steps ii & iii for K=1 to N-1

o Set MIN = DATA[K] and LOC =

K

o Repeat for J= K+1 to N

o If MIN > DATA[J] then

 MIN= DATA [J]

 LOC = DATA [J]

 LOC = J

o Set TEMP = DATA[K]

o DATA [K] = DATA[LOC]

o DATA[LOC] = TEMP

 Exit

1) Advantage: Simple and easy to implement

2) Disadvantage: Inefficient for large lists, so

similar to the more efficient insertion sort, the

insertion sort should be used in its place.

C. Insertion Sort [Best: O(N), Worst:

O(N^2)]

Start with a sorted list of 1 element on the left, and N-

1 unsorted items on the right. Take the first unsorted

item and insert it into the sorted list, moving

elements as necessary:

ALGORITHM:

 Set A[0] = -∞

 Repeat Steps iii to v for K = 2 to N

 Set TEMP = DATA[K] and PTR = K

 Repeat

 while TEMP < DATA[PTR]

 Set DATA[PTR+1] = A[PTR]

 Set PTR =PTR – 1

 Set DATA[PTR+1] = TEMP

 Exit.

1)Advantage: Relative simple and easy to

implement. Twice faster than bubble sort.

2) Disadvantage: Inefficient for large lists.

D.Quicksort [Best: O(N lg N), Avg: O(N lg N),

Worst:O(N^2)]

There are many versions of Quicksort
[7],

 which is

one of the most popular sorting methods due to its

speed (O (N lgN) average, but O (N^2) worst case).

1) Using external memory

2) Using in-place memory

3) Using in-place memory with two pointers:

Advantage: Fast and efficient

Disadvantage: Show horrible result if list is already

sorted.

E. Merge Sort [Best: O(N lg N), Avg: O(N lg N),

Worst:O(N^2)]

Merge sort is based on the divide-and-conquer

paradigm. Its worst-case running time has a lower

order of growth than insertion sort

1) Divide Step If a given array A has zero or one

element, simply return; it is already sorted.

Otherwise, split A[p .. r] into two subarrays A[p .. q]

and A[q + 1 .. r], each containing about half of the

elements of A[p .. r]. That is, q is the halfway point of

A[p .. r].

2) Conquer Step

Conquer by recursively sorting the two subarrays

A[p .. q] and A[q + 1 .. r].

Advantage: Well suited for large data set.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101651 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 275

Disadvantage: At least twice the memory

requirements than other sorts.

III. CONCLUSION

As the algorithm has already proved itself well in the

case of integer values, this could be applied to other

complex data types and its performance could be

evaluated. One such data type could be characters or

even strings. This could be helpful in sorting the

character strings and be applied in, for example,

contacts in mobile phones, words in dictionary etc.

The two dimensional matrices are being used to store

and represent massive data in many fields, such as

meteorology, engineering design and management.

Efficient two-dimensional sorting algorithms are

needed when these data are sorted by computers. The

proposed algorithm could act as a base for the

development of effective two dimensional sorting

algorithms that could serve the purpose.

For further evaluation purposes, the algorithm can be

compared with merge, cocktail or heap sort etc.

Although these algorithm have their own specific

implementation constraints, performance analysis

with these or some other existing sorting algorithms

will give be useful.

REFERENCES

[1] Sultanullah Jadoon, Salman Faiz Solehria,

Mubashir Qayum, (2011) “Optimized Selection

Sort Algorithm is faster than Insertion Sort

Algorithm: a Comparative Study” International

Journal of

Electrical & Computer Sciences IJECS-IJENS,

Vol: 11 No: 02.

[2] You Yang, Ping Yu, Yan Gan, (2011)

“Experimental Study on the Five Sort

Algorithms”, International Conference on

Mechanic Automation and Control Engineering

(MACE).

[3] Charles E. Leiserson, Thomas H. Cormen,

Ronald L. Rivest, Clifford Stein (2009)

“Introduction To Algorithms”, MIT Press, 3rd

Ed. p.5-7, 147-150.

[4] Seymour Lpischutz, G A Vijayalakshmi Pai

(2006) “Data Structures”, Tata McGraw-Hill

Publishing Company Limited, p.4.11, 9.6, 9.8.

