# ON TERNARY QUADRATIC DIOPHANTINE EQUATION 

$$
8 x^{2}+5 y^{2}=143 z^{2}
$$

M. A. Gopalan ${ }^{1}$, S. Devibala ${ }^{2}$, R. Sridevi ${ }^{3}$<br>${ }^{1}$ Professor, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu<br>${ }^{2}$ Asst.Professor, Department of Mathematics, Sri Meenakshi Govt.Arts college for women, Madurai-625002, Tamil Nadu<br>${ }^{3}$ PG student, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu

## Abstract- The ternary quadratic Diophantine equation

 representing cone given by $8 x^{2}+5 y^{2}=143 z^{2}$ is analyzed for its non-zero distinct integer points. A few interesting relations between the solutions and special figurate numbers are obtained.Index Terms- Ternary quadratic Diophantine, integer solutions, polygonal number
2010 mathematics subject classification: 11D09

## NOTATIONS:

1) Polygonal number of rank ' $n$ ' with size $m$ :

$$
t_{m, n}=n\left[1+\frac{(n-1)(n-2)}{2}\right]
$$

2) Pronic number of rank ' $n$ ':

$$
p r_{n}=n(n+1)
$$

3) Octahedral number of rank $n$ :

$$
O H_{n}=\frac{1}{3} n\left(2 n^{2}+1\right)
$$

4) stella octangular number of rank " n ":

$$
s o_{n}=n\left(2 n^{2}-1\right)
$$

5) centered pyramidal number of rank ' $n$ ' with size m:

$$
c p_{m, n}=\left[\frac{m(n-1) n(n+1)}{6}\right]+n
$$

## I. INTRODUCTION

The quadratic Diophantine equations with three unknowns offer an unlimited field for research because of their variety [1-3]. For an extensive review of various problems on ternary quadratic Diophantine equations representing specific 3 dimensional surfaces, one may refer [4-14].

In this communication, we present general formulas for obtaining sequences of non-zero integer solutions to the ternary quadratic Diophantine equation $8 x^{2}+5 y^{2}=143 z^{2}$. Also, a few interesting relations among the solutions are presented.

## II .METHOD OF ANALYSIS

The ternary quadratic equation to be solved is

$$
\begin{equation*}
8 x^{2}+5 y^{2}=143 z^{2} \tag{1}
\end{equation*}
$$

We present below different patterns of solutions to (1) :

## METHOD 1:

Introducing the linear transformations

$$
\begin{equation*}
x=X+5 T, y=X-8 T \tag{2}
\end{equation*}
$$

In (1), it is written as

$$
\begin{equation*}
X^{2}+40 T^{2}=11 z^{2} \tag{3}
\end{equation*}
$$

Assume

$$
\begin{equation*}
z=4 a^{2}+10 b^{2} \tag{4}
\end{equation*}
$$

Write 11 as
$11=(1+i \sqrt{10})(1-i \sqrt{10})$
Substituting (4),(5) in (3) and it is written in the factorizable form as

$$
\begin{aligned}
& (1+i \sqrt{10})(1-i \sqrt{10})(2 a+i \sqrt{10} b)^{2}(2 a-i \sqrt{10} b)^{2} \\
& =(X+i 2 \sqrt{10} T)(X-i 2 \sqrt{10} T)
\end{aligned}
$$

Equating real and imaginary parts, the values of z and X are

$$
\begin{align*}
& X=4 a^{2}-10 b^{2}-40 a b  \tag{6}\\
& T=2 a^{2}-5 b^{2}+2 a b
\end{align*}
$$

From (6) and (2) the corresponding integer solution of (1) are given by

$$
\begin{aligned}
& x(a, b)=14 a^{2}-35 b^{2}-30 a b \\
& y(a, b)=-12 a^{2}+30 b^{2}-56 a b \text { and along with }(4)
\end{aligned}
$$

## PROPERTIES:

1) $3 z(a, a)-y(a, a)-80 t_{4, a}=0$
2) Each of the following expressions are a nasty number.
i)

$$
30[3 z(a, a)-y(a, a)]
$$

ii) $6\{14 z(a, a)-4 x(a, a)\}$
3) Each of the following expressions are a prefect square.
i)

$$
5\{3 z(a, a)-y(a, a)\}
$$

ii)

$$
\{14 z(a, a)-4 x(a, a)\}
$$

Also, instead of (2) one may consider the linear transformation as

$$
\begin{equation*}
x=X-5 T, y=X+8 T \tag{*}
\end{equation*}
$$

For this choice, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x(a, b)=-6 a^{2}+15 b^{2}-50 a b \\
& y(a, b)=20 a^{2}-50 b^{2}-24 a b \\
& z(a, b)=4 a^{2}+10 b^{2}
\end{aligned}
$$

## METHOD 2:

(3) is written as

$$
\begin{equation*}
X^{2}+40 T^{2}=11 z^{2}=11 z^{2} * 1 \tag{7}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(3+i 4 \sqrt{10})(3-i 4 \sqrt{10})}{169} \tag{8}
\end{equation*}
$$

Substituting (4), (3), (8) in (7) and it is written in the factorization form as,

$$
\begin{aligned}
& (1+i \sqrt{10})(1-i \sqrt{10})(2 a+i \sqrt{10} b)^{2}(2 a-i \sqrt{10} b)^{2} \\
& *\left[\frac{(3+i 4 \sqrt{10})(3-i 4 \sqrt{10})}{169}\right]=(X+i 2 \sqrt{10} T)(X-i 2 \sqrt{10} T)
\end{aligned}
$$

Equating real and imaginary parts, the values of $\mathrm{X}, \mathrm{T}$ are

$$
\begin{align*}
& X=\frac{1}{13}\left[-148 a^{2}+370 b^{2}-280 a b\right] \\
& z=\frac{1}{13}\left[14 a^{2}-35 b^{2}-74 a b\right] \tag{9}
\end{align*}
$$

For X and T to be integers, the values of $\mathrm{a} \& \mathrm{~b}$ should be multiples of 13 .

Therefore, replacing a by 13 A, b by 13 B in (4), (9), we have

$$
\begin{align*}
& X=-1924 A^{2}+4810 B^{2}-3640 A B \\
& T=182 A^{2}+455 B^{2}-962 A B \\
& z=676 A^{2}+1690 B^{2} \tag{10}
\end{align*}
$$

In view of (2), it is seen that

$$
\begin{align*}
& x(A, B)=-1014 A^{2}+2535 B^{2}-8450 A B \\
& y(A, B)=-3380 A^{2}+8450 B^{2}-4056 A B \tag{11}
\end{align*}
$$

Thus, (10) \&(11) represent the integer solutions to (1).

## PROPERTIES:

1) $[5 z(a, a)-y(a, a)]$ is a perfect square.
2) $y(a, a)+5 z(a, a)-20956 t_{4, a}=0$
3) $6\{5 z(a, a)-y(a, a)\}$ is a nasty number.
4) $y(a, a)+5 z(a, a)-16900 t_{4, a}-4056 c p_{6, n}=0$

Also, using $\left({ }^{*}\right)$, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x(A, B)=-2834 A^{2}+7085 B^{2}+1170 A B \\
& y(A, B)=-468 A^{2}+1170 B^{2}-11336 A B \\
& z(A, B)=676 A^{2}+1690 B^{2}
\end{aligned}
$$

## METHOD 3:

Write 1 as

$$
\begin{equation*}
1=\frac{(3+i 2 \sqrt{10})(3-i 2 \sqrt{10})}{49} \tag{12}
\end{equation*}
$$

put (4), (5),(10) in (7) and it is written in the factorization form
as

$$
\begin{aligned}
& (1+i \sqrt{10})(1-i \sqrt{10})(2 a+i \sqrt{10} b)^{2} \\
& (2 a-i \sqrt{10} b)^{2} * \frac{(3+i 2 \sqrt{10})(3-i 2 \sqrt{10})}{49} \\
& =(X+i 2 \sqrt{10} T)(X-i 2 \sqrt{10} T)
\end{aligned}
$$

Equating real and imaginary parts, the values of X and T are

$$
\begin{align*}
& X=\frac{1}{7}\left[-68 a^{2}+170 b^{2}-200 a b\right] \\
& T=\frac{1}{7}\left[10 a^{2}-25 b^{2}-34 a b\right] \tag{13}
\end{align*}
$$

For X and T to be integers, the values of a and b should be multiples of 7 . Therefore, replacing a by 7A, b by 7B in (4), (12), we have

$$
\begin{align*}
& X=-476 A^{2}+1190 B^{2}-1400 A B \\
& T=70 A^{2}-175 B^{2}-238 A B \\
& z=196 A^{2}+490 B^{2} \tag{14}
\end{align*}
$$

In view of (2), it is seen that

$$
\begin{align*}
& x(A, B)=-126 A^{2}+315 B^{2}-2590 A B \\
& y(A, B)=-1036 A^{2}+2590 B^{2}+504 A B \tag{15}
\end{align*}
$$

Thus, (14) \& (15) represent the integer solutions to (1).

## PROPERTIES:

1) $126 z(a, a)-196 x(a, a)-458248 t_{4, a}=0$
2) $\begin{aligned} & 126 z(a, a+1)-196 x(a, a+1)-507640 t_{4, a} \\ & +49392 p r_{a}=0 \\ & \text { 3) } \\ & 126 z(a, a+1)-196 x(a, a+1)-507640 t_{4, a} \\ & +49392 O H_{n}=0\end{aligned}$

IJIRT 101652

$$
\begin{aligned}
& y^{n}=\frac{1}{24}\left[\left\{-5\left(33^{n}\right)+5\left(9^{n}\right)\right\} y_{0}+\left\{-1\left(33^{n}\right)+25\left(9^{n}\right)\right\} z_{0}\right] \\
& x_{n}=9^{n} x_{0}
\end{aligned}
$$

CASE (ii)
Let $x_{1}=15 x_{0}+4 h, y_{1}=15 y_{0}, z_{1}=15 z_{0}+h$

Following the procedure presented in case (i), the corresponding general solution to (1) is given by

$$
\begin{aligned}
& x_{n}=\frac{1}{542}\left[\left\{256(557)^{n}+286(15)^{n}\right\} x_{0}\right. \\
& \left.+\left\{144(557)^{n}-1144(15)^{n}\right\} z_{0}\right] \\
& z_{n}=\frac{1}{542}\left[\left\{64(557)^{n}-64(15)^{n}\right\} x_{0}\right. \\
& \left.+\left\{286(557)^{n}+256(15)^{n}\right\} z_{0}\right] \\
& y_{n}=15^{n} y_{0}
\end{aligned}
$$

CASE (iii)

$$
\text { Let } x_{1}=13 x_{0}-h, y_{1}=13 y_{0}-h, z_{n}=13 z_{0}
$$

Repeating the above process the corresponding general solution to (1) is given by

$$
\begin{aligned}
& x_{n}=\frac{1}{26}\left[\left\{10(13)^{n}+16(-13)^{n}\right\} x_{0}\right. \\
& \left.-\left\{10(13)^{n}+10(-13)^{n}\right\} y_{0}\right] \\
& y_{n}=\frac{1}{26}\left[\left\{-16(13)^{n}+16(-13)^{n}\right\} x_{0}\right. \\
& \left.+\left\{16(13)^{n}+10(-13)^{n}\right\} y_{0}\right] \\
& z_{n}=13^{n} z_{0}
\end{aligned}
$$

## III. CONCLUSION

In this paper, we have obtained infinitely many non-zero distinct integer solutions to the ternary quadratic Diophantine equation represented by

$$
8 x^{2}+5 y^{2}=143 z^{2}
$$

As quadratic equations are rich in variety, one may search for their choices of quadratic equation with variables greater than or equal to 3 and determine their properties through special numbers.

## REFERENCES

[1] Carmicheal R.D., "The Theory of Numbers and Diophantine Analysis", Dover Publications, New York 1959.
[2] Dickson. L.E. "History of Theory of Numbers and Diophantine Analysis", Vol.2, Dove Publications, New York 2005.
[3] Mordell L.J., "Diophantine Equations" Academic Press, New York, 1970
[4] Meena.K,
Gopalan.M.A,Vidhyalakshmi.S,Thiruniraiselvi.N" Observations on the Ternary Quadratic Diophantine equation $x^{2}+9 y^{2}=50 z^{2},{ }^{2015,1(2), 51-53}$
[5] Gopalan.M.A.,Geetha.D, Lattice points on the Hyperboloid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4 \quad$ Impact J.Sci.Tech,2010,4,23-32.
[6] Gopalan.M.A. ,Vidhyalakshmi.S ,Kavitha..A, Integral points on the Homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$, The Diophantus J.Math,2012,1(2),127-136.
[7] Gopalan.M.A., Vidhyalakshmi.S ,Sumathi.G: Lattice points on the Hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4, \quad$ Diophantus J.Math .,2012,1(2) 109-115.
[8] Gopalan.M.A.,Vidhyalakshmi.S, Lakshmi.K Integral points on the Hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21 \quad$ Diophantus J. of Math.2012,1(2),99-107.
[9] Gopalan.M.A, Vidhyalakshmi.S, Lakshmi.K, Lattice points on the elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$ Bessel J. of Math,2013,3(2),137-145.
[10] Gopalan.M.A,Vidhyalakshmi.S,UmaRani.J, Integral points on the homogeneous cone $x^{2}+4 y^{2}=37 z^{2}$ Cayley J of Math,2013,2(2),101-107.
[11] Gopalan.M.A,Vidhyalakshmi.S,Kavitha.A,Observatio ns on the Hyperboloid of twoSheets $7 x^{2}-3 y^{2}=z^{2}+z(y-x)+4 \quad$ International Journal of Latest Research in Science and technology 2013,2(2),84-86.
[12] Gopalan.M.A,Sivagami.B,Integral points on the homogeneous cone $z^{2}=3 x^{2}+6 y^{2}$ IOSR Journal of Mathematics, 2013,8(4),24-29.
[13] Gopalan.M.A,Geetha.V,Lattice points on the Homogeneous cone $z^{2}=2 x^{2}+8 y^{2}-6 x y$ Indian journal of Science,2013,2,93-96.
[14] Gopalan.M.A,Vidhyalakshmi.S,Umarani.J,On the Ternary Quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2} \quad$ Sch.J.Eng Tech.,2014,2(2A),108-112.

