
© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 95

SOFTWARE CRISIS

Kartik Rai, Lokesh Madan, Kislay Anand

Student (B.tech VI
tIh

sem) Department of Computer science

Dronacharya College Of Engineering,Gurgaon-122506

Abstract- Software Crisis is restricting the growth of

computing field due to huge gap between hardware

developments and making use of it through non

availability of software systems and competent software

development staff. So many problems have enforced the

emergence of cognitive type discipline of Software

Engineering and its persistence for not meeting the gap

imposed. Nature of software is different than systems

visible while in operation. Special emphasis is given to

identify the problems being faced which need to be

addressed for providing solutions to overcome the

software crisis. The basic premise of this paper is that

unless the problems at the software industry level are

solved, no number of technical and project management

tools can be of much help in overcoming the software

crisis. The author examines the existence of the software

crisis, its causes and its serious impact on every walk of

life. The nature of software development is discussed,

considering it as a craft and as an engineering

discipline. After evaluating various reasons and causes,

the issue is opened for researchers to get it addressed.

Issues like education, professionalization, programmer's

productivity, and human factors are discussed. Action

on these recommendations requires crossing

organizational boundaries, and viewing the problem

from a macro perspective. In the age pervasive

computing the direction is almost set but no “Silver

Bullet” solution is available has been realized by the

community. The focus of mechanical systems

development is diminishing due to realization of

software community that reuse is the solution but with

developers’ competence.

Index Terms- Software Crisis, growth of computing,

Software Engineering, cognition type discipline, Issues

and problems in development of software, programmer,

software engineer, software developer, software person,

software practitioner and software professional.

I. INTRODUCTION

 _ Software is often too complex to be entirely

understood by a single individual. We can try to

manage complexity by dividing the system into

subsystems, but,as systems grow, the interaction

between subsystems increases non-linearly.

_ It is notoriously difficult to establish an adequate

and stable set of requirementsfor a software system.

Often there are hidden assumptions, there is no

analyticprocedure for determining when the users

have told the developers everything they need to

know, and developers and users do not have a

common understanding of terms used.

_ The interaction between the different parts of a

system makes change difficult.Software is essentially

thought stuff (that is, the result of a thought

process)and much of what is important about

software is not manifest in the programsthemselves

(such as the reasons for making design decisions).

_ A requirements specification for a system contains,

perhaps implicitly, an application domain model (for

example, describing the rules of air traffic).

Developmentof application domain theories is very

difficult.

All these aspects are directly related to written

communication. Managing complexity depends on an

ability to document the interfaces (parameters and

functionality) of the modules involved. Requirements

are an important reference for the whole process and

should, therefore, be unambiguously and accessibly

described for everyone.

To keep track of changes it is important to document

what exactly has been changed.Software can be made

more visible by describing non-material artifacts,

such as the overall design of a program. Domain

models should, just like the requirements, be well

documented. Thus, software engineering can benefit

from good techniques to describe systems (programs,

subsystems, etc.)

Since last 20-25 years, there has been a rapid increase

in the development of programs using a computer.

Also, the difficulty level of software has increased to

a greater extent. In other words, a drastic change has

occurred in the development of computer programs.

In order to make the programs more and more

predictable, different types of patterns have been

created. But the software industry is still many years

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 96

away from becoming a mature engineering discipline.

Even in today's society, software is viewed with

suspicion by many individuals, such as senior

managers and customers, as something similar to

black magic. The result is that software is one of the

most difficult artifacts of the modern world to

develop and build. Developers work on techniques

that cannot be measured or reproduced. All this, lead

to a new concept called 'software crisis'. It has

become the longest continuing crisis in the

engineering world, and it continues unabated.

II. SOFTWARE CRISIS

The difficulty of writing the code for a computer

program which is correct and understandable is

referred to as software crisis. The term software crisis

revolves around three concepts: complexity, change

and the expectations. This term was given by F. L.

Bauer at the first NATO Software Engineering

Conference in 1968 at Garmisch, Germany. Current

System design approach is exceedingly empirical. It

is unable to cope with increasing systems complexity.

A number of problems in software development were

identified in 1960s, 1970s, and 1980s. The problems

that software projects encountered were: the projects

ran over-budget, caused damage to property even to

life. Despite our rapid progress, the software industry

is considered by many to be in a crisis. Some 40

years ago, the term "Software Crisis" emerged to

describe the software industry's inability to provide

customers with high quality products on schedule.

In general it refers to poorly written, hard to read,

error-prone software that often lacks good

documentation.

Software crisis is also referred to the inability to hire

enough qualified programmers. It has become the

longest continuing "crisis" in the engineering world

and it continues unabated. The most visible

symptoms of the software crisis are late delivery,

over budget; Product does not meet specified

requirements, inadequate documentation. One of the

most serious complaints against software failure is

the inability to estimate with acceptable accuracy the

cost, resources, and schedule necessary for a software

project. Conventional assessment methods have

always produced positive results which contribute to

the too well-known cost infested and schedule

slippage. As the world becomes more and more

dependent on computers and as the complexity of

software systems continues to rise, the crisis can only

get worse. It is particularly severe in vital segments

of the economy such as the health and financial

services, and the transportation, manufacturing,

communication, power generation, and defense

industries.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 97

Factors Contributing To The Software Crisis

The factors contributing to the software crisis are

numerous. If we examine them in detail then we find

what they fall into four different categories which

when combined highlight the gravity of the crisis.

These main factors are named as follows:-

dule and budget overshooting

Examination of factors

To examine in detail the issue of the software crisis,

it is necessary to determine the factors which

contribute towards each set of problems.

Schedule and budget over shooting

The development of software applications is a

thriving business. The money invested in software

technology in USA alone is billions of dollars

annually; in 1986 this was estimated at 30 billion

dollars (see [COACARD 1986]). The estimated

average annual growth rate since 1980 has been

about 12%. Today the cost of software is typically

about 80% of the cost of a complete computer system

in contrast to the situation in the late 1950s when the

cost of hardware was the major ingredient of the total

cost of the system. Business is now approaching the

situation where the hardware represents the

inexpensive ’core’ surrounded by the precious

software layers.

A highly skilled designer will be well paid and his

involvement in a project introduces high labour costs.

The software development process is labour intensive

and typically necessitates a high level of skilled-man

time units. Any increase in the time factor produces

more cost for the product. The user is complementary

to the designer. The user uses the system and enjoys

the usefulness of the system which is designed. There

is no sense in designing and implementing a system

which will not be put into practice. Sometimes the

user supplies unrealistic and over ambitious

requirements to the designer and a good amount of

designer time can be involved in indentifying the

invalidity of the user’s requirements. The time

required to carry out the feasibility check of user

requirements is also typically included in the

schedule. Even a slight deviation from the schedule

can lead to cost increases.

The computer environment can be defined as the

collection of hardware and software resources which

are utilized in order to achieve a particular effect,

normally defined by a problem description, but

including also the tools used to realize a solution to

the problem. These resources include the tools for the

designer who relies on them in any process of system

Development. The collection of tools for each project

costs money which contributes to the development

expenditure and increases the cost of the product.

Moreover, any variation in the environment in which

a tool operates or any malfunctioning of the tool

causes by delays which ultimately means more cost.

Poor estimates of resources and inadequate financial

planning also contribute to higher costs; poor quality

and cheap resources are rarely reliable and typically

cost money. A designer who is being unproductive

adds additional expenditure so contributing to greater

cost.

A contract in the form of legally binding agreements

on both sides is a compromise between the designer

and the user or potential user. This typically includes

the time scale to be followed in the development

process, (generally called the schedule), the budget

forecast to meet the financial needs in accord with the

schedule drawn up and the requirements of the user

for the software product i.e. the specification of the

system. A contract with incomplete, unclear, vague

and ambiguous requirements which are subjected to

several possible interpretations reduces the possibility

of a successful outcome and can lead to faulty or

misdirected effort. Time, effort and resources

absorbed after completion of the schedule leads to an

ultimate increase in cost. Ad hoc development -

performed without caring for documentation,

chronological recording, and verifying the system

against the contract - generates confusion and

ambiguities leading to some maintenance problems.

Typically delays in producing the software systems

are either because there is an overshoot in the budget

or delay in delivery of the system. On such occasions,

the user refuses to accept the product due to its poor

quality. Moreover, potential advantages occur in

hitting the markets before competitors do.

Productivity issues

The main challenge to software developers today is

to increase the output per time period of each worker.

To understand the issue, let us refer to the industrial

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 98

revolution in the 18th century. With the achievements

related to such a revolution, it became possible for

one worker to produce the same amount of work with

a machine as hundreds had previously done with their

hands. To create an information revolution of a

similar kind it is likewise required that one worker

must be employed to even greater effect in producing

code. This becomes possible if computer software

factories are established to produce quality software

in bulk. Unfortunately, software production factories

are not in use on a large scale; thus a lot of effort

form scientists and software engineers is expended. It

is worth noting that productivity can be measured,

e.g. as the ratio of the number of lines of source code

produced per unit of time; care needs to be exercised

to account for blank lines of commentary, several

statements packed into a single line, etc. Even the

software process itself can significantly affect the

metric.

The main strands of the software productivity issue

are people, the process, the product and the machines.

Each strand has many threads. The number of factors

conspiring to reduce productivity is large and

numerous causes are interrelated. Small systems can

be produced by an individual designer facing

minimal problems. The problems arising from

individuals are due to their limitations in capabilities,

years of experience, language experience, and

experience with similar problems; the production of

large systems by a team of designers offers a further

set of problems. Individual factors, team factors and

the factors which are due to the nature and degree of

communication among the members of a team

influence the extent of the productivity. It is an old

saying that a chain is only as strong as its weakest

link; this applies to teams of people as well as to

metal chains .Wrong selection of languages,

unsuitable development methodologies, lack of

attention to verification, validation and the system

environment - all these limit productivity at a

fundamental level. On the other hand the productivity

level is greatly enhanced if a good language which

suits the problem requirements is chosen, a well

defined and thoroughly worked out methodology is

adopted for design, the design process includes ‘walk

throughs’ and milestones, implementation is carried

out structurally, verified automatically and an

effective and supportive environment is used.

The problems associated with the product itself are:

the kind of software, the quality requirements and the

human interface. A software product of poor quality

is not attractive to the user. Moreover, to produce

high quality software needs time, commitment and

other resources (e.g. tools) which affect the level of

productivity. If the product is not accepted by the

user then the time of a skilled designer is wasted.

Low quality, large software products which do not

meet the actual development tie requirements and are

developed without proper control and modularity

typically cause future maintenance problems.

Organizations which use computer based systems

invest enormous efforts to avoid the pitfalls of such

systems and follow the wisdom of a (well known)

proverb: “It is better to die instead of remaining alive

and enduring continuously bleeding wounds”. This

produces serious setbacks to the economic and

financial resources of organizations and causes a

decrease in the morale level of team.

Factors (from the computer system (machines))

conspiring against productivity include

characteristics of the machine, its constraints and its

behaviour. Software production which is carried out

without keeping these factors in view is unlikely to

suit the purpose for which it was designed.

Unsuitable systems which do not permit the proper

control of the hardware cannot generally be modified

easily to produce a successful system and take up the

development resources in an unproductive fashion.

Recently, they have been many new hardware

machines on the market with different characteristics

and constraints; their individual behaviour hinders

the bulk production of software, leading to concerns

about portability and techniques for achieving this.

An important aspect of this is the availability or other

wise of tools and the appropriateness of techniques

for achieving productivity. Thus source control

systems, data bases, separate compilation facilities

are all aspects of these concerns.

Quality issues

There is little value in computer systems if they are

not reliable, secure and efficient. The emphasis must

be on the quality of software product; indeed the

presence of quality is a prime objective of software

engineering. A simple definition of the quality is

contained in [Ratcliff 1987], where an approach is

adopted which is based upon the observation of

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 99

defining is quality of software products as their total

‘usefulness’ to the users. And total usefulness is

further sub-divided into current usefulness, which

deals with the usage of the software in the existing

context, and potential usefulness which contributes to

the usage of the same system in any other context

resulting from slight variation of the environments,

changing requirements, varying applications, etc

Software Crisis in terms of statistics in 1990's

* 31 % of projects canceled

* 52.7% cost an average of 189% over budget

* 84% are late or over budget (91% for large

companies.)

* The average system is delivered without 58% of

proposed functionalities

* $81 billion in 1995 for cancelled projects

* $51 billion in 1995 for over-budget projects

Only 16.2% of software projects are completed on-

time and on-budget. In larger companies, a meager

9% of technology projects come in on-time and on-

budget. In addition, about one third of all projects

will be canceled before they ever get completed.

Further results indicate 53% of projects will cost an

average of 189% of their original estimates. In

financial terms this analysis revealed that over $100

billion in cancellations and $60 billion in budget over

runs occur in the Software Sector annually.

III. CAUSES

Software engineering today is in severe crisis. The

situation is particularly grim because this crisis is not

widely acknowledged by the software development

industry. The causes of software crisis were linked to

the overall complexity of the software process and

the relative immaturity of software engineering as a

profession. The main reason for the crisis is the lack

of a sound software construction methodology with

which to manage the high complexity of modern

applications. The notion of a software crisis emerged

at the end of the 1960s. An early use of the term is in

Edsger Dijkstra's ACM Turing Award Lecture, "The

Humble Programmer" (EWD340), given in 1972 and

published in the Communications of the ACM.

Dijkstra says,

"The major cause of the software crisis is] that the

machines have become several orders of magnitude

more powerful! To put it quite bluntly: as long as

there were no machines, programming was no

problem at all; when we had a few weak computers,

programming became a mild problem, and now we

have gigantic computers, programming has become

an equally gigantic problem." - Edsger Dijkstra

* The cost of owning and maintaining software in the

1980's was twice as expensive as developing the

software.

* During the 1990's, the cost of ownership and

maintenance increased by 30% over the 1980's.

In 1995, statistics showed that half of surveyed

development projects were operational, but were not

considered successful.

* The average software project overshoots its

schedule by half.

* Three quarters of all large software products

delivered to the customer are failures that are either

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 100

not used at all, or do not meet the customer's

requirements.

To explain the present software crisis in simple

words, consider the following. The expenses that

organizations all around the world are incurring on

software purchases compared to those on hardware

purchases have been showing a worrying trend over

the years.

Not only are the software products turning out to be

more expensive than hardware, but they also present

a host of other problems to the customers: software

products are difficult to alter, debug, and enhance;

use resources no optimally; often fail to meet the user

requirements; are far from being reliable; frequently

crash; and are often delivered late. Among these, the

trend of increasing software costs is probably the

most important symptom of the present software

crisis.

Software crisis: The present scenario

The Software Crisis began 4 decades ago and

continues today. In the 60s, we began to speak of a

"software crisis". A thirty year long "crisis" was

beginning. A world-wide research effort also began.

Today, the situation is quite different. We have a

Science of Programming. We know a great deal

about how to design and document software, but the

"Software Crisis" continues unabated!

The software crisis continues because the

communication between Computer Scientists and

those who write software, including the Engineers,

has been very poor. Current software standards, are

weak, superficial, and are not based on software

science. Process oriented "standards" are empty

because there are no product/document standards.

IV. SOLUTION

Over the last twenty years many different paradigms

have been created in attempt to make software

development more predictable and controllable.

While there is no single solution to the crisis, much

has been learned that can directly benefit today's

software projects. One of the possible solutions to the

software crisis is the study of software engineering. It

is believed that the only satisfactory solution to the

present software crisis can possibly come from a

spread of software engineering practices among the

engineers, coupled with further advancements in the

software engineering discipline itself. Software

engineering is concerned with all aspects of software

production from the early stages of system

specification through to maintaining the system after

it has gone into use. As a solution to this software

crisis, we must apply a disciplinary artistry; using

tools that help us manage this complexity. The skilled

systems engineer, can through the use of these

techniques and by the application of systems

engineering methods and project management skills,

reduce the demands placed on software engineers,

hence reducing the software engineering effort and

also reducing the total development cost. But still,

there is no single approach which will prevent all the

consequences of software crisis in all cases. While

there is no single solution to the crisis, much has been

learned that can directly benefit today's software

projects. It is our human inability to deal with

complexity that lies at the root of the software crisis.

It has been noted frequently that we are experiencing

a software crisis, characterized by our inability to

produce correct, reliable software within budget and

on time. No doubt, many of our failures are caused

by the inherent complexity of the software

development process, for which there often is no

analytical description.

Through the use of computer-aided symbolic

specification techniques and simulation, and with an

understanding of the software development process,

the skilled systems engineer can contribute to the

resolution of the software crisis. The skilled systems

engineer, can through the use of these techniques and

by the application of systems engineering methods

and project management skills, reduce the demands

placed on software engineers, hence reducing the

software engineering effort and also reducing the

total development cost.

In software engineering, the possible solution to

software metrics is the use of proper software metrics

and the proper utilization of these metrics. For the

implementation of this solution to the problem of

software crisis some pre-requisites are there.

They are:

1. Knowledge of basic statistics and experimental

design.

2. Basic understanding of commonly used software

life cycle models, at least to the level covered in an

introductory senior or graduate-level software

engineering course

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 101

3. Experience working as a team member on a

software development project.

In addition, for maximum utility in analytic studies

and statistical analyses, metrics should have data

values that belong to appropriate measurement scales.

Software engineering is still a very young discipline.

There are encouraging signs that we are beginning to

understand some of the basic parameters that are

most influential in the processes of software

production.

For the projects which are delivered late must

adopt the following methodology:

Project Planning & Scheduling

Project planning means creating work breakdown,

and then allocate responsibilities to the developers

over time. Project planning consists of construction

of various tasks, timelines and essential pathways

including Gantt charts and PERT charts and different

written plans for various situations. It is quite usual in

software development process to work backward

from the project end date which results in complete

software project failure. It is impossible that a project

can be completed efficiently from the planning stage

to the implementation stage. Allocation of roles and

responsibilities has to be clearly defined. Proper

scheduling is also required before the start of the

project. It includes the time scheduling, teams

scheduling.

For the projects running out of budget, cost

estimation methodology must be applied:

Cost Estimation

Cost estimation is mainly involved the cost of effort

to produce the software project. But it's not limited to

the effort only. It also includes the hardware and

software cost, training the employees and customer,

travelling to the customer, networking and

communication costs. Cost estimation should be done

as a part of the software process model. Cost

estimation needs to be done well before the start of

the project development.

Failure of the budgeting for the cost of the project

results in complete disaster. Development tools, cost

and hardware cost also need to be estimated first.

In order to cope up with the increasing system

complexity, risk management should be applied:

V. RISK MANAGEMENT

Risk management is an important factor towards

software project failure if it's not managed timely and

effectively. As nothing can be predicted that what

will happen in future so we have to take the

necessary steps in the present to take any uncertain

situation in the future. Risk management means

dealing with a concern before it becomes a crisis.

Project managers have to identify the areas where the

risk can be and how it can affect the development of

the project. Risk can be of technical nature or non

technical. After the risk is identified there is a need to

make the categories of that risk. Risk analysis is the

process of examining the project results and

deliverables after the risk analysis and applying the

technique to lower the risk. After the risk is analyzed,

the next step is to priorities the risk. At first focus on

the most sever risk first; and les sever later.

Managing the risk to achieve the desired results and

deliverables is done through controlling the risk at its

best.

VI. CONCLUSION

Thus, we have discussed software crisis, its causes,

the present status and the possible solution to this

crisis. Software engineering appears to be one of the

few options available to tackle software crisis.

Software engineering is the application of a

systematic, disciplined, quantifiable approach to

development, operation, and maintenance of

software; that is, the application of engineering to

software.

It is believed that the only satisfactory solution to the

present software crisis can possibly come from a

spread of software engineering practices among the

engineers, coupled with further advancements to the

software engineering discipline itself. The solution

being advocated is to place a special emphasis on

fault tolerance software engineering which would

provide a set of methods, techniques, models and

tools that would exactly fit application domains, fault

assumptions and system requirements and support

disciplined and rigorous fault tolerance throughout all

phases of the life cycle. Also, the software must not

be considered equivalent to a widget, i.e. a gadget.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101671 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 102

REFERENCES

Books referred:

Software engineering: concepts and techniques -

Peter Naur

Software engineering- Richard H. Thayer

Software engineering-Rajiv mal

Software engineering-kk aggarwal

Websites and links:

en.wikipedia.org/wiki/Software_crisis

www.apl.jhu.edu/Classes/Notes/.../SoftwareEngineeri

ngOverview.PDF

http://www.unt.edu/benchmarks/archives/1999/july9

9/

