
© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101691 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 303

Software Testing Techniques

Sahil Munjal , Sahil Bhardwaj , Sachin Malik

Student, Dronacharya College of Engineering, Khentawas, Farrukhnagar, Gurgaon

Abstract—Testing a software is a complex issue. This

Paper attempts to provide details on the field

software Testing Techniques. Software Testing

provides a way to find the bugs and errors in a

software by analysing a software item to detect the

differences between existing and required conditions.

It also means to find the various errors that occur in

the software because of which the software is not able

to give the correct output. There are various software

testing tools & techniques to evaluate the system. The

major issue within software testing field is to detect

bugs. There are various techniques available for

testing software.

Index Terms- Software Testing, Testing Techniques.

I. INTRODUCTION

Software Testing is one of the important topics in

field of Software development. It is a very complex

activity deserving a first-class role in software

development. Software Testing is nothing but error

detection. Thus, whenever to design and implement

the computer based system or product one should

keep in mind the testability. Testing is a process of

evaluating the system or its components to find out

the differences between existing conditions and the

required conditions.

A. Who Does Testing

Testing can be done by everyone who involved in

the development of software. Most of the time,

following professionals is involved in software

testing:

 Project Manager

 Software Tester

 Software Developer

 End User

It is not possible to test the software at any time

during

Software Development Life Cycle. So following

describes when to start & stop the testing.

B. When to Start Testing

In simple saying Software Testing can be started

from first phase of SDLC i.e. Requirement

Gathering and can be performed till the last phase

i.e. Deployment phase. But in actual it depends

upon the type of model, the software developer, is

using. For example if one is using Waterfall Model

then testing performance will be done in testing

phase only, and if one is using

incremental/Evolutionary Model then testing will

be

performed at each increment and so on.

C. When to Stop Testing

Software Testing is a Never Ending Process. Even

after

Satisfactorily completion of testing phase, we can’t

say that software is error free. Because the Input

Domain to the system is very large and it is not

possible to test each & every input.

Terminology-

Fault - An incorrect requirement (functional/non-

functional) causes program to perform in

unanticipated manner.

Error – Any mistake committed by developer at the

time of development.

Failure – Symptom of error.

Fault  Error  Failure

Thus, According to me, whenever there is any fault

in

the program, Program is still able to run, But

Performance will be degraded. Whenever there is

any Failure, Program is not able to run.

II. TESTING MYTHS

 Following are some common myths about

software testing.

Myth: Testing is too expensive.

Reality: There is always saying that we should

pay less for testing and more for maintenance. But

in actual If there will be no proper testing then it

may result in improper design of the software

which will be expensive.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101691 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 304

Myth: Missed defects are due to Testers.

Reality: It is not correct saying. The Main reason

behind this is requirement changing. As

requirements are keep on changing every time and

it is also possible that test strategy result in bugs

missed by testing team.

Myth: Complete Testing is Possible.

Reality: Due to the fact that during the lifetime of a

software product a user never uses all the possible

scenarios of the product execution as a result of

which a software tester similarly exempt these, not

so used, scenarios from testing.

Myth: Testing is Time Consuming.

Reality: It is very wrong to say that testing is time

consuming. However, diagnosing and fixing the

error during testing is time consuming but, It is a

part of Software Development or we can say it is a

Productive activity. If Testers will not identify the

errors during testing phase then it will take more

time to identify the errors.

Myth: Can only Testing Team perform the Testing.

Reality: No, Along with the testing team, also the

end-user and customers are in better state of testing

a software product as they are ultimate consumer of

the product.

Myth: Quality of Product is responsibility of

Testers.

Reality: No, in actual testers are just responsible

for identify the errors, and then it will depend upon

the development team that whether they want to fix

that error or not, If they release the product as it is

then the blame of errors comes on the testers.

Myth: Testing is done only after product is fully

developed.

Reality: There is no Doubt that testing depends on

the source code But it can also be done in previous

phases like in requirement phase reviewing

requirement and developing test cases.

Myth: After testing Product is fully bug free.

Reality: This is very common myth that

management team and end-user believe in. But in

actual even after satisfactorily completion of testing

we can’t say that product is 100% bug free. The

main reason behind this is the requirement

changing time to time.

III. TESTING LEVELS

Whenever software is tested it has to go through

three stages:

a) Unit Testing

b) Integration Testing

c) System Testing

d) Acceptance Testing

as shown in the following figure.

A. Unit Testing

This is the first level in which each and every

module of

software is tested separately. In this output of one

module can be the input to the other. But

unfortunately if output is wrong then another

module to which we give the input will also

collapse.

 Thus it’s better to test each and ever y module

separately so that there will be less chance of

collapse.

B. Integration Testing

 After Unit Testing there comes Integration

Testing in which all modules tested during unit

testing are integrated together and then performing

testing on them. It provides testing again on all that

modules so that if any error remains that will be

removes. It is of three types.

 Top-Down Testing:

In this first of all main modules called Top module

is tested only after that rest of the modules are

tested.

 Bottom-Up Testing:

In This firstly bottom up module is tested after that

all the modules are tested.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101691 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 305

Mixed-Approach

This is the best approach because it combines the

features of Top-Down and Bottom-Up Approach.

In this all the modules firstly present then testing is

performed.

C. System Testing:

After all the bugs, errors have been removed it’s

the turn of system testing to occur. As shown in the

figure it includes three sub-categories.

 a Testing:

This type of system testing is performed by the

developers of the software. So Development team

is basically responsible for testing.

 ß Testing:

This testing is performed by friendly set of

customers .It means developers release their

product from their side and then end user test the

product, but it is not the final delivery of the

product.

Acceptance Testing:

This testing we can say the combination of both a

and ß

Testing in which customers test whether to accept

the delivered product or not.

IV. TESTING TECHNIQUES

Here, I am discussing two testing techniques.

A. White Box Testing

B. Black Box Testing

A. White Box Testing :

Used to check the internal structure of the system.

Performed to test all the Branches, Segments,

Loops, and

Conditions of the program. Testers who perform

testing should have through knowledge of the

system code and they should also know the aim

[purpose] of the system for which it is developed.

White-Box Testing can be either fault based or

coverage based.

a. Fault-Based :

Fault-Based as the name implies refers to detect

certain types of faults. Main Example of fault

based testing is Mutation Testing where errors or

bugs are inserted by the programmer or testers their

self and then to verify whether the test cases are

able to detect those errors or not.

b. Coverage-Based Testing

Coverage Based Testing as the name implies refers

to cover the elements of a program. Examples are

Statement Coverage, Path Coverage.

 Statement Coverage means there is no other

way to check whether the errors exist in the

statement unless that statement is executed at least

once. So, in order to check a statement, it is

necessary to execute it. Following Example will

give an idea.

1. While(x!=y){

2. If(x<=y) then

3. y=y-x;

4. else x=x-y;

5. }

6. Return x;

}

So, for this program, by choosing the test case

{(x=2,y=2),(x=3,y=2),(x=2,y=3)}, then all the

statement of the program will be executed at least

once.

 Path Coverage means all basis paths in the

program are executed at least once. For this CFG

(Control Flow Graph) is used that describes the

sequences in which different instructions of the

program are executed. Following Example will

give an idea.

1. If (x > y)

2. z = 4

3. else z = 5

4. z= z + z

B. Black-Box Testing :

 Used to check the functional requirements.

Performed to check all the inputs and outputs of

these

requirements.

 Includes interaction between Input, Requirement,

Events and output.

Black-Box Testing can be either:

a. Equivalence Class Partitioning

b. Boundary Value Analysis

McCabe’s Cyclomatic Complexity Metric:

It defines an upper bound on the no. of basis path in

program. Here I will discuss three ways to compute

it. Let us take an example.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101691 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 306

Method 1:

No. of Predicate + 1

i.e. x and y are predicates, So

2 + 1 = 3

Method 2:

E – N + 2

Where E is Edge and N is Node, So

6 – 5 + 2 = 3

Method 3:

No. of enclosed area + 1

i.e. 2 + 1 = 3

V. NEW APPROACH: OBJECT ORIENTED

PROGRAMS TESTING

Earlier when object oriented programming was

developed, it was believed that object oriented

testing will definitely reduce the cost & effort. This

thinking was based on the various new

programming features provided by object oriented

programming including Encapsulation,

Polymorphism, Data Abstraction, Inheritance etc.

But very soon, it came to know that object oriented

testing is taking more time, cost & effort as

compare to testing of procedural programs. This is

because the new features provide additional

complications & various new types of bugs in the

program which requires additional test cases to

perform the testing. Thus, here I am going to

discuss two types of testing schemes performed on

object oriented programs.

A. Gray-Box Testing:

It is done from the outside of the system. Actually

we can say that it is the combination of white-box

and black-box testing which can be applied in real

time systems. Following are some subtypes of

gray-box testing.

 State-Model-Testing: It tests each method of an

object,

transition & transition paths at each state of an

object.

 Class-Diagram Testing: It tests all the derived

classes of the base class.

 Sequence-Diagram Testing: It tests all the methods

occurring in sequence diagram.

B. Integration Testing:

It includes two main types as following:

 Thread-Based Testing: In this all the classes of a

single Use Case are integrated together and then

testing is performed. This process is going on until

all the classes of all Use Cases have been

considered.

 Use-Based Testing: It performs the testing on the

classes that either need the services from other

classes or does not need any services.

VI. CONCLUSION

Software Testing is and will forever be a

fundamental

activity of Software Engineering. We will never

find a test approach that is guaranteed to deliver a

“perfect” product, whichever is the effort we

employ.

 Software Testing is a trial-and-error

methodology. Software Testing can never be

satisfactorily completed because of the input

domain from customer.

 Testing costs can be reduced by using different

test

automation tools.

 Testing helps to detect the errors in system but

does

not prove that system is error free.

 Testing Object Oriented Programs provides new

features but including additional complications as

well.

 Object Oriented Testing Techniques takes more

time

as compare to testing of Procedural Programs.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101691 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 307

REFERENCES

[1] C.Easteal and G.Davis, Software Engineering

Analysis and Design, Tata McGraw Hill.

[2] Richard Fairley ,Software Engineeering

Concepts ,Tata Mcgraw Hill.

[3] Ian Sommeriele, “Software Engineering” ,

Addison

Wesley.

[4] Pressman, Software Engineering –A

Practitioner’s

Approach.

[5] Pankaj Jalote , An Integrated Approach to

Software

engineering, Narosa Publication.

[6] T.H. Shivkumar, ”Software Testing

Techniques”Volume 2,Issye 10,ISSN:2277 128X.

[7] Jovanovi,c, Irena,”Software Testing Methods

and

Techniques”Page No-30-41

[8]Software Testing Overview , available:

http://www.tutorialspoint.com/software_testing/soft

ware_testing_quick_guide.htm

