
© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101695 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 188

Software Testing Research and Software Engineering

Amrendra Kumar Upadhyay, Ankit Bhatt, Anil Pilaniya

Dronacharya College Of Engineering, Gurgaon

Sec-5, Haryana-122506

Abstract- Software testing research has not kept up with

modern software system designs and applications, and

software engineering education falls short of providing

students with the type of knowledge and training that

other engineering specialties require. Testing

researchers should pay more attention to areas that are

currently relevant for practicing software developers,

such as embedded systems, mobile devices, safety-

critical systems and other modern paradigms, in order

to provide usable results and techniques for

practitioners. We identify a number of skills that every

software engineering student and faculty should have

learned, and also propose that education for future

software engineers should include significant exposure

to real systems, preferably through hands-on training

via internships at software producing firms.

Index Terms- Reliability, Software Testing, Software

Engineering.

I. ISSUE IN SOFTWARE TESTING

RESEARCH

Where is software going - all those billions or

trillions of lines of code currently running and the

gazillions more that will be written in the next decade

and how does it relate to the current software

engineering research literature? Where the research

community is headed and are research and practice

converging? When we write our research papers, is

there anyone out there listening or are we writing for

ourselves and for each other?

The sorts of software systems discussed in the

software testing research literature, by and large, are

systems that are either stand-alone, or that connect

with other software systems that run on what are

typically thought of as computers. These systems take

inputs which are characters, or numbers, or files of

characters and numbers. It is relatively easy to

understand how to test them, even if it is not done

very well, or very thoroughly, or if good ways of

assessing the comprehensiveness of the tests are

lacking. Typically in the research community, testing

is equated with functionality testing. The sorts of

issues that are addressed are how to generate and

select test cases, how to do it efficiently, how to

assess adequacy, etc.

Of course, all of these are important issues, but this

research has been done for decades and very few of

its results have changed the way software is tested in

any fundamental way. We believe this is because

researchers are not talking about the types of software

that industry and government are increasingly

concerned about, and are not talking about testing for

the types of problems that are of the greatest concern

for these systems. Additionally, researchers generally

do not provide compelling evidence that the

techniques they propose in their research will actually

be successful or be practically beneficial. Finally,

practitioners often complain about the lack of robust

tool support for a proposed testing research approach.

If a prototype tool that is hard-to-use and understand

is provided by the researchers, practitioners will be

very reluctant to spend time learning it, especially

when the benefits are doubtful, and its operation is

frustrating. If the task of building a usable tool is left

to its potential users, it will almost certainly not

happen. Practitioners have their hands full with the

subject system they are building; they are generally

not willing to invest significant time out of their

already overstretched schedules to implement a new

technique that they view as unproven because there

are no large-scale empirical studies to back it up.

Furthermore, these sorts of systems of systems are by

no means unique to the military or to the automotive

industry. Embedded systems are in every industry,

and they are increasingly driven by analog inputs

such as pulses, or electrical inputs, or a continuously

variable mechanical action, all of which are far

removed from anything the end-user is aware of. For

example, one might have to test an automobile fuel

injection software system, which responds to another

system that reacts to a driver’s depressing a gas pedal.

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101695 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 189

Testing researchers first have to learn how to test

these embedded systems for functionality, even if the

system under test is a flight control system for an

airplane that is still under design, or a satellite yet to

be built. How can one test the functionality of an

implanted device that emits a signal or injects some

medication into a patient’s bloodstream when certain

conditions occur, provided that other conditions have

not occurred? Once the functional testing has been

completed, how can one assure the airplane

manufacturer or the satellite designer that the

embedded systems are not vulnerable to attack, that

they work under all sorts of environmental

conditions, that they work when inputs are outside the

expected ranges, and that they can meet performance

goals, safety regulations and reliability requirements?

This is where the research community needs to be

headed because this is where the world is heading.

And clearly the research community should be

arriving ahead of the systems that are being built in

industry. Research should be guiding development,

but in software engineering, and particularly software

testing, that is often not the case.

II. EDUCATION, TRAINING, EXPERIENCE

This section describes what we believe to be the three

most important factors in raising the level of software

quality and producing a future generation of qualified

software engineers. Advances in design,

implementation, and validation research are

obviously important, but none of them will be

ultimately useful without well-trained practitioners

who know how to distinguish good design from bad,

and who can make intelligent choices of appropriate

implementation and validation techniques. The

elements of software engineering education include at

least the following:

• solid grounding in fundamentals of computer

science, including appropriate mathematics

• the importance of working in teams, and how to

take advantage of different team members’

skills and expertise

• Understanding of all the key factors that might

be relevant for a system, when each is

appropriate, and how to evaluate them. These

factors include such things as

– risk

– safety

– performance

– reliability

– correctness (and this might not be the most

important)

– ease of use, clarity

In many engineering disciplines, it is usual for

students to have internships which are essentially

apprenticeships, where they learn by working with

experienced professional engineers and get real

hands-on training. Such programs frequently extend

an undergraduate engineering degree from four to

five years. In many fields, engineering graduates

cannot legally call themselves an engineer without

passing a licensing exam, and that often has a work

experience requirement. For example, it’s not enough

to know the theory of building a bridge if you want to

be a civil engineer; you also have to work with people

who design and build them and are experienced

enough to mentor interns.

In the United States, these sorts of internships are

not the norm in software engineering, and an exam is

generally not required for someone to call himself or

herself a software engineer. It is not clear that there

are any requirements at all that go with the title.

Therefore, it’s important to consider how to assure

that our software engineering faculty are qualified to

actually teach more than foundational courses in the

field. One possible solution is for funding agencies to

offer summer or even year-long positions for

software engineering faculty to work at industrial

development and testing organizations. The

companies will probably gain very little immediate,

concrete benefit from such visitors, and that is why

funding agencies should underwrite their expenses.

We are not speaking about a professor spending the

summer or a sabbatical working in an industry

research lab - that seldom involves really learning

how practitioners specify, design, build or test

software, since in many industry labs, researchers are

just as far removed from practitioners as academics

are.

III. THE BIG PICTURE AND HOW TO GET

THERE

In the future we will see more and more embedded

software systems, increasingly larger systems of

systems, systems that require synchronization with

other systems, systems of mobile devices, and safety-

critical systems that control all sorts of medical

devices and procedures. Since these systems are

© 2014 IJIRT | Volume 1 Issue 11 | ISSN: 2349-6002

IJIRT 101695 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 190

embedded and depend on other systems, and do not

run on devices that look like computers, and are not

necessarily directly responding to stimuli controlled

by the end user, new ways of testing them need to be

developed. This is a significant research challenge.

In most engineering fields, systems are specified

using engineering models, which every engineer of

the relevant type has been taught to create and

understand. That is definitely not the case with

software engineers, and modeling needs to be

included as a standard tool or skill that every

software engineer routinely learns as part of their

education. In addition, since embedded software

systems are increasingly common and widespread,

software engineers need to learn how to simulate

systems.

Simulation is a standard tool in many other

engineering disciplines, but it is rarely taught to

software engineering students. If you are testing a

component of a larger system that has not yet been

built, the only alternative might be to test it by doing

simulations. Other circumstances under which

dynamic testing cannot be done at a particular stage

of development include software systems embedded

in a device that might have disastrous safety

consequences if the software were to fail. This might

include things like software embedded in medical

devices or airplanes. It might be considered too risky

to dynamically test the system until it has been

compellingly shown to function properly, and the

most compelling evidence might come from

simulations. While simulation is not a substitute for

significant dynamic testing, it certainly does offer the

possibility of providing evidence of potential flaws in

the system before the airplane is ready to fly, for

example

IV. SUMMARY

Far-sighted individuals have called for more attention

to engineering principles and sounder education for

software engineers for many years [1, 2, 3, 4, 5]. We

have tried to offer some concrete suggestions for how

we might improve software engineering education,

by identifying a number of skills that every software

engineering student and faculty should have learned,

as well as hands-on training that they should have

had. We have also pointed out the following areas

that the research community needs to focus on to

meet the demands of the types of systems that are

being built today and will increasingly be built in the

future.

• testing embedded systems

• testing properties other than functionality,

including performance, safety and security

• simulation

• industrial grade empirical studies

• easy-to-use tools that implement testing

techniques

REFERNCES

www.youtube.com

www.wikipedia.org

www.google.co.in

