
© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 101959 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1447

Anomalous Behavior Based Intrusion Detection in

Wireless Sensor Network

M.Viswanathan

Assistant Professor, Department of Computer Science School of Engineering and Technology

Madawalabu University, Bale Robe, Ethiopia

Abstract— Wireless Sensor Network is easily vulnerable to

intrusion due to its features of open medium, dynamic

changing topology, cooperative algorithms, lack of centralized

monitoring and management point, and lack of a clear line of

defense. An intruder may drop, change or misroute the packet

passing through the malicious node. Detection of abnormal

behavior in the use of network services can be done using

anomaly based intrusion detection. In this paper, we consider

the problem of detecting the abnormal behavior of malicious

node which drops packets destined to particular node. It is

quite challenging to attribute a missing packet to a malicious

action because normal network congestion can produce the

same effect. Previous detection protocols have tried to

address this problem with a user-defined threshold. However,

this heuristic is fundamentally unsound and will certainly

create unnecessary false positives or mask highly focused

attacks. We have implemented a compromised node detection

protocol that dynamically infers, based on measured traffic

rates and buffer sizes, the number of congestive packet losses

that will occur. Once the ambiguity from congestion is

removed, subsequent packet losses can be attributed to

malicious actions.

Index Terms— distributed systems, intrusion detection,

malicious nodes, reliable networks and tolerance.

I. INTRODUCTION

Wireless sensor networks are a trend of the past few years,

and they involve deploying a large number of small nodes.

The nodes then sense environmental changes and report

them to other nodes over flexible network architecture.

Sensor nodes are great for deployment in hostile

environments or over large geographical areas. Since the

nodes are deployed in sparse area it is easily susceptible to

external attacks. An intruder may drop, change or misroute

the packet passing through the malicious node. Hence

intrusion detection plays a major role in wireless sensor

network. There are two basic approaches to intrusion

detection: misuse intrusion detection and anomaly intrusion

detection. In misuse intrusion detection, known patterns of

intrusion are used to try to indentify intrusions when they

happen. In anomaly intrusion detection, it is assumed that

the nature of the intrusion is unknown, but that the

intrusion will result in behaviour different from that

normally seen in the system. In our work, anomaly

intrusion detection approach is used.

II. BACKGROUND

There are inherently two sets of threats posed by an

adversary: First, an attacker may subvert the network

control plane and attack by means of the routing protocol.

For example, by issuing false routing advertisements, a

compromised node may manipulate how other nodes view

the network topology, and thereby disrupt service globally.

Second, an attacker may subvert the network data plane

and attack by means of the packet forwarding process. By

causing the node to violate the forwarding decisions that it

should make based on its routing tables, a compromised

node may disrupt communication in the network. Once a

node has been compromised, an attacker may interpose on

the traffic stream and manipulate it maliciously to attack

others by selectively dropping, modifying, or re-routing

packets.

By issuing false routing advertisements in control plane,

a compromised node may manipulate other nodes’ views of

the network topology, and thereby disrupt service globally.

For example, if a node claims that it is directly connected

to all possible destinations, it may become a “black hole”

for most traffic in the network. Perlman described robust

flooding algorithms for delivering the key state across any

connected network, and described a means for explicitly

signing route advertisements. There have subsequently

been a variety of efforts to impart similar guarantees to

existing routing protocols with varying levels of cost and

protection. Generally, these techniques break down into

two categories: approaches based on ensuring the

authenticity of route updates and those based on detecting

inconsistency between route updates.

By contrast, the threat posed by subverting the

forwarding process has received comparatively little

attention until very recent years. This is surprising since, in

many ways, this kind of attack presents a wider set of

opportunities to the attacker not only denial-of-service, but

also packet sniffing, modification and insertion and is both

trivial to implement and difficult to detect.

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 101959 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1448

III. SYSTEM MODEL

Our work proceeds from an informed, yet abstracted,

model of how the network is constructed, the capabilities of

the attacker, and the complexities of the traffic validation

problem. In this section, we briefly describe the

assumptions underlying our model.

A. Network Model

The bandwidth, the delay of each link, and the queue

limit for each interface are all known publicly. Within a

network, we presume that packets are forwarded in a hop-

by-hop fashion, based on a local forwarding table. These

forwarding tables are updated via DSDV routing protocol.

This is critical, as we depend on the routing protocol to

provide each node with a global view of the current

network topology. Finally, we assume the administrative

ability to assign and distribute cryptographic keys to sets of

nearby nodes.

Every protocol assumes a synchronous network model

of coarsely synchronized clocks and/or bounded message

delays. This assumption is required by the protocols in

order to decide whether a packet has been delivered within

the expected time interval which is determined via timeout

mechanism.

We define a path to be a finite sequence <n1; n2; . . . nn>

of adjacent nodes. Operationally, a path defines a sequence

of nodes a packet can follow. We call the first node of the

path as source and the last node its sink; together, these are

called terminal nodes. A path might consist of only one

node, in which case the source and sink are the same.
Terminal nodes are leaf nodes: they are never in the middle

of any path.

An x−path-segment is a sequence of x consecutive nodes

that is a subsequence of a path. A path-segment is an

x−path-segment for some value of x > 0. For example, if a

network consists of the single path <a, b, c, d> then <c, d>

and <b, c> are both 2-path-segments, but <a, c> is not

because a and c are not adjacent.

B. Threat Model

A node can be traffic faulty by maliciously dropping

packets and protocol faulty by not following the rules of

the detection protocol. Specifically, a node n is traffic

faulty with respect to a path-segment during τ if

contains r and, during the period of time τ, r exhibits

anomalous behavior with respect to forwarding data that

traverses . For example, node n can selectively alter,

misroute, drop, reorder, or delay the data that flows

through , and it can fabricate new data to send along

such that the packets, if they were valid, would have been

routed through . A node can drop packets without being

faulty, as long as the packets are dropped because the

corresponding output interface is congested.

A compromised node n can also behave in an arbitrarily

malicious way in terms of executing the protocol we

present, in which case we indicate n as protocol faulty. A

protocol faulty node can send control messages with

arbitrarily faulty information, or it can simply not send

some or all of them. A faulty node is one that is traffic

faulty, protocol faulty, or both. Attackers can compromise

one or more nodes in a network. However, for simplicity,

we assume in this paper that adjacent nodes cannot be

faulty.

IV. POTOCOL VIEW

The problem of detecting and removing compromised

nodes can be thought of as an instance of anomalous

behaviour-based intrusion detection. That is, a

compromised node can be identified by correct nodes when

it deviates from exhibiting expected behaviour. This

problem can be broken into three sub problems.

A. Traffic Validation

Traffic information is the basis of detecting anomalous

behaviour: given traffic entering a part of the network, and

an expected behaviour of the nodes in the network,

anomalous behaviour is detected when the monitored

traffic leaving that part of the network differs significantly

from what is expected. Implementing such validation

involves tradeoffs between the overhead of monitoring,

communication and accuracy.

A compromised node can make arbitrary alterations to

the forwarding behaviour of that node, but given the

distributed nature of packet forwarding it is not possible in

general for an adversary to perfectly conceal such

behaviour. As long as the packets traverse some

uncompromised node, there is enough data redundancy to

detect the alteration. Hence, implementing a traffic

validation mechanism is an engineering problem.

The most precise way to validate traffic is store, at each

node, a complete copy of the packets sent and the time at

which each was forwarded. However, the storage

requirements to buffer these packets and the bandwidth

consumed by resending them make this approach

impractical. In practice, designing a traffic validation

function is a trade-off between accuracy and overhead. In

addition, real networks occasionally lose packets due to

congestion, reorder packets due to internal multiplexing,

and corrupt packets due to interface errors. Traffic

validation needs to accommodate this abnormal but non-

malicious behaviour. That is, one must address an inherent

trade-off between an acceptable number of false positives

and false negatives.

Consider the queue Q in a node n associated with the

output interface of link <n, nd> (see Fig. 1). The neighbor

nodes ns1; ns2 ; . . . ; nsn feed data into Q.

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 101959 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1449

Fig.1 Validating the queue of an output interface

Traffic Validation TV can be implemented by simulating

the behaviour of Q. Let P be a priority queue, sorted by

increasing time stamp. All the traffic information source S

and destination D are inserted into P along with the identity

of the set (S or D) from which the information came. Then,

P is enumerated. For each packet in P with a fingerprint fp,

size ps, and a time stamp ts, qpred is updated as follows.

Assume t is the time stamp of the packet evaluated prior to

the current one.

 If fp came from D, then the packet is leaving Q:

qpred(ts) := qpred(t)-ps.

 If fp came from S and (fp Є D), then the packet fp is

entering and will exit: qpred(ts) := qpred(t) + ps.

 If fp came from S and fp does not belongs to D, then

the packet fp is entering into Q and the packet fp will

not be transmitted in the future: qpred(ts) is unchanged,

and the packet is dropped.

 If qlimit < qpred(t) + ps, where qlimit is the buffer limit of

Q, then the packet is dropped due to congestion.

Otherwise, the packet is dropped due to malicious

attack. Detect failure.

B. Distributed detection

The detection of a compromised node requires

synchronizing the collection of traffic information and

distributing the results for detection purposes. Since the

behaviour of the queue is deterministic, the traffic

validation mechanisms detect traffic faulty nodes whenever

the actual behaviour of the queue deviates from the

predicted behaviour. However, a faulty node can also be

protocol faulty: it can behave arbitrarily with respect to the

protocol, by dropping or altering the control messages of

detection protocol X. We mask the effect of protocol faulty

nodes using distributed detection.

Given TV, we need to distribute the necessary traffic

information among the nodes and implement a distributed

detection protocol. Every outbound interface queue Q in

the network is monitored by the neighboring nodes and

validated by a node nd such that Q is associated with the

link <n; nd>.

There are two stages in distributed detection

1. Traffic information collection.

2. Information Dissemination and Detection.

Step 1. Traffic Information Collection

Each node collects the following traffic information during

a time interval τ:

ns*: Collect Tinfo (ns*; Qin; <ns*; n; nd>; τ).

n: Collect Tinfo (n; Qin; ns*; <ns*; n; nd>; τ). This

information is used to check the transit traffic information

sent by the ns* nodes.

nd: Collect Tinfo (nd; Qout; h<n; nd>; τ).

Step2. Information Dissemination and Detection

 ns*: At the end of each time interval τ, node ns*sends

[Tinfo (ns*; Qin; <ns*; n; nd>; τ)] ns* that it has

collected. [M]* is a message M digitally signed by x.

Digital signatures are required for integrity and

authenticity against message tampering.

1. Detection -I. n: Let ▲ be the upper bound on the time

to forward traffic information.

a. If n does not receive traffic information from

ns* within ▲, then n detects <ns*, n>.

b. Upon receiving sends [Tinfo (ns*; Qin; <ns*;

n; nd>; τ)] ns*, node n verifies the signature

and checks to see if this information is equal

to its own copy Tinfo (n; Qin; ns*; <ns*; n;

nd>; τ). If so, then r forwards it to nd. If not,

then n detects <ns*, n>.

At this point, if n has detected a failure <ns*, n>

then it forwards its own copy of traffic

information Tinfo (n; Qin; ns*; <ns*; n; nd>; τ). This

is required by nd to simulate Q’s behavior and

keep the state q up to date.

2. Detection -II. nd :

a. If nd does not receive traffic information

Tinfo (n; Qin; ns*; <ns*; n; nd>; τ)

originated by ns* within 2▲, then it

expects n to have detected ns* as faulty

and to announce this detection through

the response mechanism. If n does not do

this, then nd detects <n, nd>.

b. After receiving the traffic information

forwarded from n, nd checks the integrity

and authenticity of the message. If the

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 101959 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1450

digital signature verification fails, then nd

detects <n, nd>.

c. Collecting all traffic information, node nd

evaluates the TV predicate for queue Q.

If TV evaluates to false, then nd detects

<n, nd>.

C. Response

Once a node n detects node n’ as faulty, n announces the

link <n’, n> as being suspected. This suspicion is

disseminated via the distributed link state flooding

mechanism of the routing protocol. As a consequence, the

suspected link is removed from the routing fabric. A

protocol faulty node r can announce a link <n’, n> as being

faulty, but it can do this for any routing protocol. And, in

doing so, it only stops traffic from being routed through

itself. Node n could even do this by simply crashing itself.

To protect against such attack, the routing fabric needs to

have sufficient path redundancy.

V. EVALUATION

A. Network with no model

We had investigated how accurately the protocol

predicts the queue lengths of the monitored output

interfaces. We considered the results for the output

interface Q of the compromised node n associated with the

link <n, s>. Background traffic was created to make <n,s>

a bottleneck.

Fig. 2 Q pred of network with no attack

The result of no attack run is shown in Figure 2. qpred is

the predicted queue length of Q computed by source node s

executing the protocol . qact, which is the actual queue

length of Q recorded by compromised node n, is not shown

in the graph because it is so close to qpred.

B. Detecting Attacks

We then experimented with the ability of protocol to

detect attacks. In these experiments, the compromised node

n is compromised to attack the traffic selectively in various

ways, targeting the chosen two ftp flows.

Fig. 3 Difference between qpred and qact

VI. CONCLUSION

Anomaly intrusion detection helps in the detection of

abnormal behaviour in the use of network services and

computing resources. The problem of detecting whether a

compromised node is maliciously manipulating its stream

of packets is focused here. It is quite challenging to

attribute a missing packet to a malicious action because

normal network congestion can produce the same effect.

Compromised node detection protocol that dynamically

infers, based on measured traffic rates and buffer sizes, the

number of congestive packet losses that will occur. If we

made clear that the packet loss is not due to congestion,

subsequent packet losses can be attributed to malicious

actions. Compromised node detection protocol does not

suffer from the limitations of static thresholds.

REFERENCES

[1] A.T. Mizrak, Y.-C. Cheng, K. Marzullo, and S.

Savage, “Detecting and Isolating Malicious Routers”,

IEEE Trans. on Parallel and Distributed systems, vol.

20, no.2, February 2009.

[2] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R.

Katz, “Listen and Whisper: Security Mechanisms for

BGP”, Proc. First Symp. Networked Systems Design

and Implementation (NSDI ’04), Mar. 2004.

[3] B.R. Smith and J. Garcia-Luna-Aceves, “Securing the

Border Gateway Routing Protocol”, Proc. IEEE Global

Internet, Nov. 1996.

[4] Yih Chun Hu, A. Perrig, and D.B. Johnson, “Ariadne:

A Secure On-Demand Routing Protocol for Ad Hoc

Networks”, Proc. ACM MobiCom ’02, Sept. 2002.

[5] S. Cheung, “An Efficient Message Authentication

Scheme for Link State Routing”, Proc. 13th Ann.

Computer Security Applications Conf. (ACSAC ’97),

pp. 90-98, 1997.

[6] S. Cheung and K.N. Levitt, “Protecting Routing

Infrastructures from Denial of Service Using

Cooperative Intrusion Detection”, Proc. Workshop on

New Security Paradigms (NSPW ’97), pp. 94-106,

1997.

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 101959 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1451

[7] K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee,

and R.A. Olsson, “Detecting Disruptive Routers: A

Distributed Network Monitoring Approach”, Proc.

IEEE Symp. Security and Privacy (S&P ’98), pp. 115-

124, May 1998.

[8] J.R. Hughes, T. Aura, and M. Bishop, “Using

Conservation of Flow as a Security Mechanism in

Network Protocols”, Proc. IEEE Symp. Security and

Privacy (S&P ’00), pp. 131-132, 2000

[9] I. Avramopoulos, H. Kobayashi, R. Wang, and A.

Krishnamurthy.” Highly secure and efficient routing”,

In Proceedings of INFOCOM 2004 Conference, March

2004.

[10] A. Herzberg and S. Kutten. “Early detection of

message forwarding faults”. SIAM J. Comput.,

30(4):1169–1196, 2000.

[11] K. Argyraki, P. Maniatis, D. Cheriton, and S.

Shenkerm, “Providing packet obituaries”, In

Proceedings of ACM SIGCOMM HotNets-III, 2004.

[12] C. N.-R. Baruch Awerbuch, David Holmer and H.

Rubens. “An on-demand secure routing protocol

resilient to byzantine failures”, In ACM Workshop on

Wireless Security (WiSe), September 2002.

[13] V. N. Padmanabhan and D. R. Simon. “Secure

traceroute to detect faulty or malicious routing”,

SIGCOMM Computer Communications Review,

33(1):77–82, 2003.

[14] I. Avramopoulos and J. Rexford. “Stealth Probing:

Efficient Data-Plane Security for IP Routing”, In Proc.

USENIX Annual Technical Conference, May-Jun

2006.

[15] R. Perlman. “Network Layer Protocols with Byzantine

Robustness”, PhD thesis, MIT LCS TR-429, Oct.

1988.

[16] R. Perlman. “Interconnections: Bridges and Routers”,

Addison Wesley Longman Publishing Co. Inc., 1992.

[17] N. G. Duffield and M. Grossglauser. “Trajectory

sampling for direct traffic observation”, IEEE/ACM

Transactions on Networking, 9(3):280–292, 2001.

