
© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102202 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1489

BRING YOUR OWN DEVICE (BYOD) DETECTION

USING PEREGRINE7 CENTRAL MANAGEMENT

SYSTEM

Kavyashree J
1
, Pavanalaxmi

2

1
M.tech 4th sem, VLSI & embedded system, SCEM, Mangalore

2
Dept of ECE, SCEM, Mangalore

Abstract - Peregrine7 is a BYOD (Bring Your Own

Device) Security and Access Control Solution. It

provides real-time monitoring, mitigation of

enterprise risk associated with noncompliant and/or

compromised endpoints, and device & app aware

granular access control over enterprise resources.

Index Terms - Peregrine7, postgresql

I. INTRODUCTION

Peregrine Guard provides one of the best

enterprise mobility network access control platform

and integrates well with the existing authentication

products such as MS Active Directory, LDAP and

RADIUS and also works well with the existing

security and network infrastructure with no changes

to the existing network. Peregrine Guard also

provides auto-discovery of all devices making sure

no device goes undetected and there are no

unauthorized devices on the corporate network. Its

central policy management and complete visibility

and alert mechanism makes it unique in the market

to alert and prevent spread of malwares which are

now finding backdoor entry into corporate network

via BYODs. Peregrine Guard also integrates well

with Microsoft Exchange ActiveSync helping in

remote wipe out of the device when required.

Central management of the P7 devices: Here we

provide the master slave policy configuration

facility to admin; from master peregrine 7 he can

set the policy to different slave peregrine 7. put the

all admin entered policy in XML and then convert

that into ACL language (because we need to write

policy into core switch).From master p7 send

data(policy) to slave p7 through IP address and

port number, and Master p7 will get the policies

from all the p7 appliances through secure

copy(SCP) and expect scripts. Master and slave

will communicate with SCP.

II. PROJECT MODULES

1. Device Fingerprinting:

A device fingerprint is information

collected about a device for the purpose of

identification when device connected to

organization through WIFI or LAN. Fingerprints

can be used to fully or partially identify individual

users or devices.

 DHCP Fingerprinting: DHCP (Dynamic

Host Configuration Protocol) client implementation

of every operating system varies and these

variations can be mapped to form a unique

signature to identify a particular operating system.

P7 uses following (but not limited to) DHCP

signatures to identify an operating system uniquely.

 HTTP Fingerprinting: HTTP (Hyper Text

Transfer Protocol) Every HTTP communication

sends an HTTP header called User Agent, which

has information of the client. It is commonly like

Operating system, device type, browser version,

Brower SDK version. P7 maintains a database of

well-known User agent formats and extracts

relevant information to identify device attribute of

the end device with HTTP protocol Fingerprinting,

we get the device Attributes like OS Version of

Device, browser information, apps etc..,

 RADIUS protocol Fingerprinting:

RADIUS (Remote Authentication Dial-In User

Service) protocol encapsulates EAP messages.

Extensible Authentication Protocol or EAP is an

authentication framework frequently used in

wireless networks and Point to point connections.

EAP protocol carries information like Username,

location and authentication tokes (MAC address of

the wireless access point). By decoding RADIUS

Protocols packets we get associate information like

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102202 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1490

Username/Group name, location with a particular

device.

2. Centralized policy Configuration:

 This module helps admin to push common

policies to the P7 box as well as individual policy.

The centralized policy manager has the list of P7

appliances and their IP addresses, its login

information and location of the policy.

Here we do two types of policy configurations:

 1. Push policy

 2. Pull policy

Pull Policy: Here we will get the policies from all

the p7 appliances through secure copy (SCP) and

expect scripts.

Push Policy: Here we will push the policy from

master p7 to all the p7 appliances through SCP.

This module will do remote copy policies in XML

format from the centralized policy manager.

3. Centralized database management

module:

In this module master will have the details

of all p7 appliances (IP, username, password and

UUID). Master will get data from all appliances

using Postgresql TCP (port 5432) and aggregate the

data. Data will be managed using UUID of the

appliance so that we can see the appliance based

report as well. In centralized database will keep

only the top 100 communications from each

appliance. If user wants to see the detailed report he

can connect to individual appliances through

master.

4. Authentication module:

There are two kinds of authentication. One

is local authentication and another active directory

authentication.

5. Local authentication:

P7 Administrators are provided with

facility of User Management. Administrators can

add/remove users and their rights. If Local

Authentication is used, user’s information is stored

in the local database. Passwords are hashed using

md5/sha2 algorithm and stored in the database.

6. Active Directory Authentication:

P7 Administrators can choose to use

Active Directory for user management. P7

Administrator has to provide Active Directory IP

address and admin credentials to enable Active

Directory authentication. Once Active Directory

authentication is enabled every time a user tries to

login, P7 will sends the credentials to Active

Directory. If Active Directory validates and permits

the user credentials, then the user is allowed to

login to P7 User Interface.

7. Centralized reporting module:

 In this module we Collect data from all p7

boxes (slave) and we aggregate it, here we have

different type of reporting. It is helpful to maintain

hard copy of data about each device and what they

access.

1. Security Reporting

 Reports based on Intrusion Detection System

alerts.

2. URL Category Reports

Peregrine Guard (PG) is a transparent

appliance that sits behind wireless access points in

enterprise networks. It passively analyses all the

traffic coming from and going to all the mobile

devices. This analysis leads to discovery of the type

of device (iPhone / iPad /Android / Blackberry),

OS version running in the device, user of the

device, time of usage, location of device usage,

some of the applications running in the device.

Discovered information is presented in dashboards.

IT will be able to define fine grained access control

policies using the discovered attributes. Peregrine

Guard applies these access control policies on the

traffic between wireless devices and rest of the

network (both intranet and the internet).

Peregrine7 Core Engine

Database (Postgresql)

Webserver (Ruby on Rails)

Web Interface/Browser

Fig1. Peregrine7 High-Level Product Architecture

Peregrine7 core engine:

Sniffs Wireless Traffic in the Enterprise and apply

analytics to provide useful information about the

devices (Operating System, Version, Type of

Device, Authenticating User etc…). It also

analyzes the traffic to derive security metrics like

whether the device is Jail broken/Rooted, Device

OS/ Application vulnerabilities etc..

Provides Internet traffic analytics, like what type of

URLs the device is visiting. GeoIP analytics,

Blacklisted IP database lookup etc… All the

analytical data is stored into Database (Postgresql).

Database (postgresql):

All the data collected collected/analyzed by the

core engine is stored into Postgresql Database.

Webserver:

Peregrine7 implements a Web User Interface in

order to provide visibility into the collected data.

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102202 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1491

Web server runs on individual appliance and is

implemented using “Ruby on Rails” framework.

The Rails framework is connected to Postgresql

database as it primary data source.

Web client:

Peregrine7 appliance administrator can login to the

Web Interface using any browser. Peregrine7

provide rich user interface and uses latest UI tools

like query, bootstrap etc...

III. SOFTWARE REQUIREMENTS AND

HARDWARE REQUIREMENT

Software Requirements:

Operating system : Ubuntu 12.04 and above.

Software Tool : Ruby on Rails Framework,

Java Script.

Database tool : Postgres.

Hardware Requirements:

RAM : 1GB

HDD : 20 GB

Processor : Pentium 4

IV. EXISTING SYSTEM AND PROPOSED

SYSTEM

Existing System:

As mentioned in the Peregrine7 product

architecture diagram. Peregrine7 provides control

over the core engine as well as visibility into data

collected by core engine using web interface. Every

Peregrine7 appliance runs the Web Interface which

can be accessed by Peregrine7 Administrator to

configure the system or view reports/dashboards.

Proposed System (Peregrine7 Central

Management System):

As discussed earlier, every Peregrine7

Appliance runs Web Interface that helps

Administrators to configure and view

reports/dashboards of Peregrine7 UI. However, for

large Enterprises, there are multiple installations of

Peregrine7 Appliances. It is cumbersome for the

Administrator to manage multiple Peregrine7

appliances by individually logging into each of the

appliance. Proposed Peregrine7 Central

Management System solves this problem by

providing a single interface to multiple Peregrine7

appliances/installations.

Challenges in the proposed solutions:

1. Management of multiple database connections.

2. Synchronization of configuration settings among

multiple Peregrine7 boxes.

3. Data synchronization used for reports and

dashboards.

4. High Availability.

V. MODULES (FUNCTIONAL AND NON-

FUNCTIONAL)

1. Centralized database management module

In this module we have to manage multiple

database connection from each P7 boxes.

2. Centralized reporting module

This module collects data from all the P7

boxes and aggregates it.

3. Centralized policy configuration module

This module helps admin to push common

policies to all the P7 boxes as well as individual

policy.

 Pull Policy

 Push Policy

 Synchronize Policy

4. Authentication module

There are two kinds of authentication.

 Local authentication

 Active directory authentication

5. Device Fingerprinting

Detect device attributes like Device Type

(iPhone/iPad …), operating system (Android,

iOS...), Operating System version, Device Model

(HTC One, Sony etc...) by analyzing various

network protocols

 DHCP fingerprinting

 HTTP fingerprinting

 sTCP/IP fingerprinting

VI. CONCLUSION

Peregrine Guard, its latest security

offering for enterprises. It monitors BYODs (Bring

Your Own Devices) in enterprise LANs and offers

a complete security solution through few simple

steps executed in seamlessly across wireless

networks, without intruding on user privacy.

REFERENCES

[1]. [1] “Programming with World Wide Web”

- by Robert W. Sebesta.

[2]. [2] wikibooks.org/wiki/Ruby_on_Rails

[3]. http://guides.rubyonrails.org/getting_starte

d.html

[4]. http://www.fingerbank.org/

[5]. http://ruby.learncodethehardway.org/

[6]. http://railscasts.com/

[7]. http://www.net-

square.com/httprint_paper.html

[8]. http://www.tutorialspoint.com/RubyonRai

ls

[9]. http://www.w3schools.com/

© 2015 IJIRT | Volume 1 Issue 12 | ISSN: 2349-6002

IJIRT 102202 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1492

[10]. http://getbootstrap.com/2.3.2/getting-

started.html/

[11]. http://www.tutorialspoint.com/postgresql/

