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Abstract— Genetic algorithms are search methods 

based on principles of natural selection and genetics. 

These encode the decision variables of a search 

problem into finite-length strings. The strings are 

referred to as chromosomes and the alphabets are 

referred to as genes. This paper presents the design of IIR 

filter using GA. To formulate GA capable of designing an IIR 

filter, various constraints has been developed for the desired 

fitness function. The proposed algorithm has been tested for 

Butterworth filter. The magnitude response of the 

designed Butterworth IIR filter almost matches the 

desired response with an error 2e-6%. This shows the 

accuracy of the proposed algorithm. . Comparison of 

the pole-zero plot shows that there is very small error 

between the pole-zero placements in the desired and 

designed filters. Also the fitness function has converged 

with 1300 generations and achieve minimum value of is 

approximately 3e-32. 

Index Terms—Infinite Impulse Response Filter, Genetic 

algorithm, Butterworth Filter.  

I. INTRODUCTION 

The basic idea of Genetic algorithm is that it works in 

iterations and there is an improvement in every step 

as a result of benefiting from the inherited treats from 

the previous step. It starts from the initial solution, in 

each iteration step, an operation is selected and it is 

applied to the current solution. If the altered result is 

acceptable e.g. it is better than the current one, it 

becomes the current solution for the next iteration, 

otherwise, it is refused. The iteration process stops 

when the requested solution or the maximum number 

of iterations is reached. In general, genetic algorithms 

are better than gradient search methods if the search 

space has several local minima or maxima. Since the 

genetic algorithm traverses the search space using the 

genotype rather than the phenotype, it is less likely to 

get stuck in a local high or low [3, 4]. GA’s start with 

a set of initial random solutions called population and 

these solution are evaluated by test and are sorted 

according to their fitness, those solution or 

individuals having higher fitness values are given a 

chance to reproduce by an operation called cross-over 

and the less-fit individuals are discarded. After 

crossover some bits “gene” are flipped either from 1 

to 0 or vice versa in an operation that mimics 

mutation in living organisms. A flowchart of a 

generic genetic algorithm is shown in figure 1.1. 

 

 

 
 

Fig. 1.1 : Genetic algorithm flow chart 

 

Although the GA is a general optimization algorithm, 

but it needs to be modifed to design a digital IIR filter 

design. These modifications include a method for 

mapping a filter to an element, evaluation of the 

fitness function of the IIR filter, creation of an initial 

population of the IIR filter, and very importantly, the 

designed filter must be are realizable. But for 
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development of fitness function, transfer function 

H(z) for a digital IIR filter could be defined as [27] 
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Where bi and ci are the cofficients of the polynomial. 

zi and pi, represents zeroes and poles respectively. K 

is the gain factor. Α determines the order of the filter. 

Not that for a filter to be realizable the following two 

conditions must meet [1] 

 

 A causal, Linear time invariant system with 

system function H(z) is bounded input 

bounded output (BIBO) stable if and only if 

all the poles of H(z) lie inside the unit 

circle.  1ip   

 A causal, stable, LTI system with system 

function H(z) is real if and only if all 

complex poles and zeros of H(z) have 

complex conjugate pairs or exist singularly 

on the real axis. 

II.  FILTER DESIGN USING GA 

Generally  GA must be modified to apply it to the 

FDA. We have mapped the filter transfer function 

Hn(z) to an element xn. We have mapped r the 

coefficients of the polynomial form of Hn(z) to the 

vectors of xn. As filter stability requires that all poles 

pi of Hn(z) must be inside the unit circle. Thus we 

have put the constraint to the value of pi. To meet the 

minimum phase requirements, same constrain has 

also been applied to the zeros zi,. Although this can 

put a restriction on the required phase. 

Ignoring Kn and putting M = 2 α in equation 

1.1, complex vectors will be required to map Hn(z) to 

xn. For this complex vector requirement and Hn(z) to 

be real all poles and zeroes must have a complex 

conjugate pair or they should lie on the real axis. To 

meet above requirement, we can say, for every 

complex vector an,m in xn, there must exist another 

complex vector an,k where 

*

, ,n k n ma a      (1.2) 

 

This relationship between vectors changes the way 

crossover and mutation can perate. For instance, if 

crossover generates an offspring with a complex 

vector an,m, the  crossover operator must ensure that a 

complex vector an,k  that satifies (1.2) is also 

generated. Moreover, if mutation modifies an,m by ¸ λ, 

then mutation must also modify an,k  by  λ
*
. The gain 

Kn  is not mapped into xn. Thgis is due to the fact that 

as the pole and zeros locations are restricted inside 

the unit circle, the gain factor may lie in the  range of  

0 K  .  

          

Population management for good 

performance is a major issue in design problems 

where GA is used. The random generation of the 

initial population P(0) of filters and check on P(g) for 

all g to keep P within the range of S is very important  

After selecting the value of  α,  zero and pole 

locations should be randomly selected for each xn in 

P(0).  For the proposed filter, we have selected a 

complex vector with the uniform joint PDF as 
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(1.4) 

For crossover and mutation process to 

manipulate vectors without regard to S, we have used 

strategy where any vector representing poles and 

zeros outside the unit circle is mapped back into the 

unit circle. Any zero zi that lies outside the unit circle 

is mapped to a zero iz  inside the unit circle with the 

equation 

*

1
i

i

z
z

       (1.5) 

As the shape of the filter magnitude response will 

change when mapping poles from outside to inside 

the unit circle. Therefore, it is assumed that all poles 

are located within the unit circle before crossover and 

mutation are applied. The pole mapping strategy 

needed to maintain stability can be seen in (1.5). The 

reciprocal nature of the equation maps poles close to 

the unit circle to another location close to the unit 

circle and poles far from the unit circle to a location 

closer to the origin. equation 1.5 is equally valid for 

poles  with zi  replaced by pi.  

As our main aim is to design and optimize a 

IIR filter with an arbitrary magnitude response. 

Hence, the fitness function should include both the 

magnitude responses of the filter undergoing 

evaluation and the desired magnitude response. The 

fitness function is evaluated as under: 
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1. The fitness of n is calculated by first 

mapping the vectors of xn to the pole and 

zero pairs of Hn(z).  

2. The magnitude response  j

nH e 
 of 

 nH z  with a default gain of K = 1 is 

evaluated for all frequency bins Ω.  

3. The desired magnitude response 

 j

dH e 
  is also identified at these same 

frequency bins.  

4. To compensate for  nH z ,  j

nH e 
 is 

scaled by Kn ,  where Kn I chosen to 

minimize the error between  j

n nK H e 

and  j

dH e 
.  This is achieved by 

forcing the average magnitude value of 

 j

n nK H e 
 to equal the average 

magnitude value of  j

dH e 
 . The 

equation for calculating Kn  is 
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5. The squared error is calculated by squaring 

the difference between  j

n nK H e 
 and 

 j

dH e 
 for all Ω.  

6. The squared error values are then weighted 

by multiplying them with a weighting vector 

Q that assigns a weighting factor to each 

frequency bin Ω. This enables certain 

frequency bins of the magnitude response to 

contribute more or less to the overall fitness 

of xn.  

7. Finally, the weighted squared error values 

are summed and scaled to produce the 

fitness value of xn. If  j

n nK H e 
 is 

identical to  j

dH e 
 , then the fitness 

value will be zero. The complete fitness 

function is 
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where Y is the total number of frequency bins, Ωy is 

an element of Ω, and Qy is an element of Q . 

III. DESIGN OF BUTTERWORTH FILTER 

To design, Butterworth filter following parameter 

selected as follows:  

 The desired magnitude response 
( )j

dH e 

 

a fourth-order Butterworth bandpass filter 

with lower and upper 3-dB cutoff points of 

4
l


 

 and 

3

4
u


 

 , and unity 

passband gain.  

 The frequency vector Ω for specifying  

( )j

dH e 

  and evaluating 
( )j

n nK H e 

 

consists of 10,000 frequency bins equally 

spaced between 0 and   .  

 The weighting vector Q equals 1 for all 

10,000 points. This force all frequency bins 

of the magnitude response to be equally 

important for optimization. 

 To accommodate the exact Butterworth 

transfer function output α is selected as 

4.Population size N = 200, element size M = 

α = 4, and probability of crossover pc = 0.7. 

The exit criteria are set to gen_max = 2,000 

and fit_min = 0. 

The magnitude response of the designed IIR filter is 

shown in Figure 1.2. Its pole-zero plot is shown in 

Figure 1.2. For comparison, the pole-zero plot for the 

theoratical fourth order Butterworth bandpass filter is 

shown in Figure 4.3. The errors between the pole-

zero placements in the desired and designed filters are 

listed in Table 4.1. The fitness function convergence 

is shown in Figure 4.4. From Figure 4.4, it has been 

concluded that the ending fitness level of the 

designed filter is approximately 3e-32 and that major  

fitness improvements ceased after approximately 

1,100 generations. 
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Figure 1.2. Magnitude response of the designed 

Butterworth filter . 

 
 

Figure 1.3. Pole-zero plot for the designed              

butterworth filter. 

 

  

 

         

Figure 1.4. Pole-zero plot for the desired 

Butterworth filter  

 

Figure 1.5. Fitness curve of the    Butterworth      

Filter 

 

IV. CONCLUSION 

This paper prposes  the design of IIR filter using GA. 

Various constraints has been developed for the desired 

fitness function for designing an IIR filter. The proposed 

algorithm has been tested for Butterworth filter. The 

magnitude response of the designed Butterworth IIR 

filter almost matches the desired response with an 

error 2e-6%. The proposed work shows the accuracy 

of GA algorithm. . Comparison of the pole-zero plot 

shows that there is very small error between the pole-

zero placements in the desired and designed filters. 

Also the fitness function has converged with 1300 

generations and achieve minimum value of is 

approximately 3e-32.  
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