
© July 2015 | IJIRT | Volume 2 Issue 2 | ISSN: 2349-6002

IJIRT 142504 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 215

FAST LEMPEL-ZIV (LZ’78) COMPLEXITY

ESTIMATION USING CODEBOOK HASHING

Harman Jot, Rupinder Kaur

M.Tech, Department of Electronics and Communication,

Punjabi University, Patiala, Punjab, India

I. INTRODUCTION

Compression is useful as it helps reduce resources usage,

such as storage space or transmission capacity. But we must

decompress the compressed data before use. This overhead

processing imposes extra computational costs. For instance,

a compression scheme for video may require expensive

hardware for the video to be decompressed fast enough to be

viewed as it is being decompressed, [1] and the option to

decompress the video in full before watching it may be

inconvenient or require additional storage. The design of

data compression schemes involves trade-offs among

various factors, including the degree of compression, the

amount of distortion introduced and the computational

resources required to compress and un-compress the data.[2]

An order over some alphabet typically exhibits some

regularities, what is essential to think of compression. For

distinctive English texts we can spot that the most regular

letters are e, t, a, and the least regular letters are q, z. We can

also discover such words as the, of, to regularly. Often also

longer remains of the text reappearance, probably even the

whole sentences. We can use these stuffs in some way, and

the succeeding sections elaborate this matter.

II. SOURCE CODING

Source coding or data compression is a process of efficiently

converting the output of either an analog or digital source

into a sequence of binary digits. Most data shows patterns

and is subject to certain constraints. This is true for text, as

well as for images, sound and video. [3]

III. DICTIONARY CODING

Dictionary coding techniques rely upon the [4] observation

that there are correlations between parts of data (recurring

patterns). The basic idea is to replace those repetitions by

(shorter) references to a "dictionary" containing the

original.[5]

1.3.1 Static Dictionary

The simplest forms of dictionary coding use a static

dictionary. Such a dictionary may contain frequently

occurring phrases of arbitrary length, di-grams (two-letter

combinations) or n-grams. This kind of dictionary can easily

be built upon an existing coding such as ASCII by using

previously unused codewords or extending the length of the

codewords to accommodate the dictionary entries [4].

1.3.2 Semi-Adaptive Dictionary

The aforementioned problems can be avoided by using a

semi-adaptive encoder. This class of encoders creates a

dictionary custom-tailored for the message to be

compressed. Unfortunately, this makes it necessary to

transmit/store the dictionary together with the data. [4]

1.3.3 Adaptive Dictionary

The Lempel Ziv algorithms belong to this third category of

dictionary coders. The dictionary is being built in a single

pass, while at the same time also encoding the data. As we

will see, it is not necessary to explicitly transmit/store the

dictionary because the decoder can build up the dictionary in

the same way as the encoder while decompressing the

data.[6]

IV. COMPRESSION ALGORITHMS

This segment develops a methodical building of binary

codes compressing the data of a foundation

 Shannon-Fano Algorithm

 Huffman Algorithm

 The Lempel-Ziv Algorithm

1.4.1 Huffman Algorithm

This algorithm, invented in 1952 by D.A. Huffman, delivers

a prefix code whose building can be achieved by a binary

tree. Here are the successive steps:[7]

First step

We assemble the source symbols on a row in order of

increasing likelihood from left to right.

Second step

Let us denote and the two basis symbols of lowest

likelihoods and in the list of the source words. We

association and together with two subdivisions into a

node which substitutes and with probability task equal

to . and are removed from the list and substituted

by the node. [8]

Third step

© July 2015 | IJIRT | Volume 2 Issue 2 | ISSN: 2349-6002

IJIRT 142504 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 216

We apply the process of the second step until the likelihood

assignment is equal to 1. Then, the conforming node is the

root of the binary tree.

1.4.2 The Lempel-Ziv Algorithm

1.4.2.1 Principle

The LZ’78 is a dictionary-based compression algorithm that

maintains an explicit dictionary. The codewords output by

the algorithm consist of two elements: an index referring to

the longest matching dictionary entry and the first non-

matching symbol.[9][10]

In addition to outputting the codeword for

storage/transmission, the algorithm also adds the index and

symbol pair to the dictionary. When a symbol that not yet in

the dictionary is encountered, the codeword has the index

value 0 and it is added to the dictionary as well. With this

method, the algorithm gradually builds up a dictionary.[11]

1.4.2.2 Algorithm

w := NIL;

while (there is input)

{

K := next symbol from input;

if (wK exists in the dictionary)

{

w := wK;

}

else

{

output (index(w), K);

add wK to the dictionary;

w := NIL;

}

}

This simplified pseudo-code version of the algorithm does

not prevent the dictionary from growing forever. There are

various solutions to limit dictionary size, the easiest being to

stop adding entries and continue like a static dictionary

coder or to throw the dictionary away and start from scratch

after a certain number of entries has been reached. [11]

V. IMPLEMENTATION

Despite the problems discussed above, LZ78 is among the

more available universal complexity estimators. However,

complexity estimation using LZ78 usually quantities to

performing the entire compression procedure and comparing

inverse density ratios as a measure of complexity. In fact,

the simple Lempel Ziv partition covers enough data to

estimate complexity without execution the entire

compression encoding procedure. Central to the LZ78

algorithm is the partitioning scheme familiarized by Ziv and

Lempel. The LZ78 algorithm partitions a string into prefixes

that it hasn’t seen before, forming a codebook that will

(given a long adequate string with enough repetition) enable

long strings to be encoded with small indexes. Consider an

example to illustrate how this algorithm works: LZ

partitioning of the string is,

1011010010011010010011101001001100010

Performed by injecting commas each time a sub-string that

has not yet been recognized is seen. The following partition

results: [12]

1,0,11,01,00,10,011,010,0100,111,01001,001,100,010

The nodes noticeable in black of the five level tree are nodes

confined in the LZ78 partition of the example string. Nodes

that are not occupied in designate code words or phrases that

are not controlled in the LZ78 partition. Each node or phrase

happens precisely once in the string with the exclusion of

the last phrase which may be a recurrence of a beforehand

seen node. Good compression (low complexity estimation)

outcomes when the LZ78 partition contains a deep, sparse

tree, while poor compression (high complexity estimation)

results from strings that are less deep and extra completely

occupied at each level Maximum compression of LZ78 is

attained if all code words are children of the same branch,

for example, the string:

1101011011101101011001011000 partitioned as

1,10,101,1011,10110,101100,1011000 will be extremely

compressed by LZ78. However, the following string will not

be compressed by LZ78.

1010110100100101110111000001= 1,0,10,11,01,00,100,

101, 110, 111, 000, 001

Since the presentation of LZ78 will be determined by the

partition, by absorbed exclusively on the tree partition

features of the algorithm we can attain better efficiency

when using LZ78 to approximation complexity. The vital

metric is the number of phrases in the partition. The

minimum number of sub-strings (commas) in an LZ78

partition is the number such that each sub string is one bit

longer than the previous sub string[12]:

Solving this quadratic calculation and taking the positive

solution for we have:

For strings of any considerable length, the constant terms

become insignificant and a good estimation of the lower

bound results from ignoring the preservative constant terms:

Since we know the negligible number of phrases a string of

length can have, we can standardize the number of phrases

in the LZ78 partition based on this minimum for use in

crucial a normalized complexity estimator. We define a the

metric C as an estimator of complexity using the LZ78

partition given a string of length bits and an LZ78

partition of M phrases:

© July 2015 | IJIRT | Volume 2 Issue 2 | ISSN: 2349-6002

IJIRT 142504 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 217

This metric allows use of the LZ78 partitioning algorithm to

estimate complexity, regularized by length, providing an

estimator similar to compression ratio, but without the

necessity for the overhead to actually complete the LZ78

compression.[12]

VI. RESULTS

Simulations were done using MATLAB. The following

menu is generated using MATLAB.

####### LZ'78 Algorithm #######

[1] Encode user-defined message.

[2] Encode pre-defined msg #1.

[3] Encode pre-defined msg #2.

[4] Encode pre-defined msg #3.

[5] Decode a sequence.

[6] Exit.

################################

Enter your option:

The user needs to select an option to continue. The first

option will encode a user-defined message using LZ’78

encoding. The fifth option decodes an already encoded

sequence. The second, third and fourth options encode pre-

defined messages of length 1 lakh, 2 lakh and 3 lakh

respectively. These options are required as it is very difficult

to enter large sequences of data for testing. The last option

(sixth) is used to terminate the Matlab program.

The MATLAB following program illustrates the encoding

of a user-defined message – “Hello World!”

####### LZ'78 Algorithm #######

[1] Encode user-defined message.

[2] Encode pre-defined msg #1.

[3] Encode pre-defined msg #2.

[4] Encode pre-defined msg #3.

[5] Decode a sequence.

[6] Exit.

################################

Enter your option: 1

################################

Enter the message to encode: Hello World!

Do you want to use Hashing? (Y/N) [Y]: Y

Do you want to find Complexity? (Y/N) [Y]: Y

Text Message (12 characters):-

Hello World!

Binary Message (96 characters):-

010010000110010101101100011011000110111100100000

010101110110111101110010011011000110010000100001

Encoded Message (137 characters):-

000101010001100101011100111000110010011111010010

101011010111001010010000001001001100100111011100

10101000100010100100101110111110000111011

Total Phrases in the Code Book = 29

Time taken to Encode = 00:00:00.049 (0.049489 seconds)

Length of input Message (Total characters) = 12

Length of Message after binary conversion = 96

Length of Message after LZ'78 Encoding = 137

Binary Message Complexity = 16

Binary Message Normalised Complexity = 1.0975

Encoded Message Complexity = 21

Encoded Message Normalised Complexity = 1.088

Compression Ratio -> 142.71 %

You can see above that we used hashing as the option “Do

you want to use Hashing? (Y/N) [Y]:” was set to “Y” or

Yes. The message “Hello World!” consists of twelve

characters (including SPACE) which were first converted to

binary using UTF8 encoding and then the binary sequence

was encoded using LZ’78 (explained earlier) using hashing.

Code book size was 29. This means there were in total 29

unique phrases in the message to be encoded. Time taken for

encoding was 0.049489seconds.

Compression ratio is 142.71%. Ideally, we want this ratio to

be less than 100%. Less ratio implies that the encoded

sequence length is less than the original message length (in

binary) and that the data is compressed.

Similarly, the below program will decode the above

generated encoded sequence to get the original message

back.

####### LZ'78 Algorithm #######

[1] Encode user-defined message.

© July 2015 | IJIRT | Volume 2 Issue 2 | ISSN: 2349-6002

IJIRT 142504 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 218

[2] Encode pre-defined msg #1.

[3] Encode pre-defined msg #2.

[4] Encode pre-defined msg #3.

[5] Decode a sequence.

[6] Exit.

################################

Enter your option: 5

################################

Enter the sequence to decode:

000101010001100101011100111000110010011111010010

101011010111001010010000001001001100100111011100

10101000100010100100101110111110000111011

Decoded Message :-

Hello World!

Time taken to Decode = 00:00:00.022 (0.021591 seconds)

Length of Encoded Sequence = 137

Length of Decoded Message = 12

Similarly, the same process was repeated for pre-defined

messages and the following results were obtained.

Table 1: Compression Ratio comparison for different

message length.

Input

Binary

Message

Length

Encoded

Message

Length

Code Book

Entries

Compression

Ratio

801,096 611,609 39,833 76.35 %

1,602,200 1,170,977 72,337 73.09 %

2,402,448 1,706,459 102,086 71.03 %

Table 2: Encoding time comparison with and without

Hashing.

Input Message

Length

(Binary Message)

Time taken to Encode

With Hashing Without Hashing

801,096 0.4150 seconds 45.5558 seconds

1,602,200 1.0525 seconds 157.4849 seconds

2,402,448 1.3753 seconds 319.1074 seconds

We can see from the results obtained in table 1, larger the

input message length more is the compression ratio. Also the

number of code book entries increase with input message

length. With such a huge amount of entries it is virtually

impossible for any system to perform a real-time search.

Form the results obtained in table 2, we can see that with

increase in the number of codebook entries the encoding

time increases from 45 seconds to nearly 320 seconds

without hashing. But as explained earlier about fastness of

hashing, we can see that the encoding time remains almost

unchanged with increase in number of codebook entries. It

increases but slowly as compared to the one without

hashing. If we can encode this fast with LZ’78, this implies

we can find the codebook size swiftly, which in turn is the

complexity estimation of a string as explained earlier.

Hence, our results.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of

communication,” ACM SIGMOBILE Mobile

Computing and Communications Review, vol. 5, no. 1,

pp. 3-55, 1948.

[2] M. E. Hellman, “An extension of the Shannon theory

approach to cryptography,” Information Theory, IEEE

Transactions on, vol. 23, no. 3, pp. 289-294, 1977.

[3] R. N. Williams, “An extremely fast Ziv-Lempel data

compression algorithm,” in Data Compression

Conference, 1991. DCC'91., 1991.

[4] K. Sayood, Introduction to data compression, Newnes,

2012.

[5] T. Jacob and R. K. Bansal, “On the optimality of

Sliding Window Lempel-Ziv algorithm with side

information,” in Information Theory and Its

Applications, 2008. ISITA 2008. International

Symposium on, 2008.

[6] T. C. Bell, J. G. Cleary and I. H. Witten, Text

compression, vol. 348, Prentice Hall Englewood Cliffs,

1990.

[7] D. Kirovski and Z. Landau, “Generalized Lempel--Ziv

compression for audio,” Audio, Speech, and Language

Processing, IEEE Transactions on, vol. 15, no. 2, pp.

509-518, 2007.

[8] M. Malyutov, “Recovery of sparse active inputs in

general systems: a review,” in Computational

Technologies in Electrical and Electronics Engineering

(SIBIRCON), 2010 IEEE Region 8 International

Conference on, 2010.

[9] J. Ziv and A. Lempel, “A universal algorithm for

sequential data compression,” IEEE Transactions on

information theory, vol. 23, no. 3, pp. 337-343, 1977.

[10] S. Wadhwani, A. Wadhwani, S. Gupta and V. Kumar,

“Detection of bearing failure in rotating machine using

Adaptive Neuro-fuzzy inference system,” in Power

Electronics, Drives and Energy Systems, 2006.

PEDES'06. International Conference on, 2006.

[11] J. Ziv and N. Merhav, “A measure of relative entropy

between individual sequences with application to

universal classification,” Information Theory, IEEE

Transactions on, vol. 39, no. 4, pp. 1270-1279, 1993.

© July 2015 | IJIRT | Volume 2 Issue 2 | ISSN: 2349-6002

IJIRT 142504 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 219

[12] J. H. G. S. S.C. Evans, “Kolmogorov Complexity

Estimation and Analysis,” Information and Decision

Technologies, no. 1, pp. 1-6, October 2002.

