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I. INTRODUCTION 

Compression is useful as it helps reduce resources usage, 

such as storage space or transmission capacity. But we must 

decompress the compressed data before use. This overhead 

processing imposes extra computational costs. For instance, 

a compression scheme for video may require expensive 

hardware for the video to be decompressed fast enough to be 

viewed as it is being decompressed, [1] and the option to 

decompress the video in full before watching it may be 

inconvenient or require additional storage. The design of 

data compression schemes involves trade-offs among 

various factors, including the degree of compression, the 

amount of distortion introduced and the computational 

resources required to compress and un-compress the data.[2] 

An order over some alphabet typically exhibits some 

regularities, what is essential to think of compression. For 

distinctive English texts we can spot that the most regular 

letters are e, t, a, and the least regular letters are q, z. We can 

also discover such words as the, of, to regularly. Often also 

longer remains of the text reappearance, probably even the 

whole sentences. We can use these stuffs in some way, and 

the succeeding sections elaborate this matter.  

II. SOURCE CODING 

Source coding or data compression is a process of efficiently 

converting the output of either an analog or digital source 

into a sequence of binary digits. Most data shows patterns 

and is subject to certain constraints. This is true for text, as 

well as for images, sound and video. [3] 

III. DICTIONARY CODING 

Dictionary coding techniques rely upon the [4] observation 

that there are correlations between parts of data (recurring 

patterns). The basic idea is to replace those repetitions by 

(shorter) references to a "dictionary" containing the 

original.[5] 

1.3.1 Static Dictionary 

The simplest forms of dictionary coding use a static 

dictionary. Such a dictionary may contain frequently 

occurring phrases of arbitrary length, di-grams (two-letter 

combinations) or n-grams. This kind of dictionary can easily 

be built upon an existing coding such as ASCII by using 

previously unused codewords or extending the length of the 

codewords to accommodate the dictionary entries [4]. 

1.3.2 Semi-Adaptive Dictionary 

The aforementioned problems can be avoided by using a 

semi-adaptive encoder. This class of encoders creates a 

dictionary custom-tailored for the message to be 

compressed. Unfortunately, this makes it necessary to 

transmit/store the dictionary together with the data. [4] 

1.3.3 Adaptive Dictionary 

The Lempel Ziv algorithms belong to this third category of 

dictionary coders. The dictionary is being built in a single 

pass, while at the same time also encoding the data. As we 

will see, it is not necessary to explicitly transmit/store the 

dictionary because the decoder can build up the dictionary in 

the same way as the encoder while decompressing the 

data.[6] 

IV. COMPRESSION ALGORITHMS 

This segment develops a methodical building of binary 

codes compressing the data of a foundation 

 Shannon-Fano Algorithm  

 Huffman Algorithm 

 The Lempel-Ziv Algorithm 

1.4.1 Huffman Algorithm  

This algorithm, invented in 1952 by D.A. Huffman, delivers 

a prefix code whose building can be achieved by a binary 

tree. Here are the successive steps:[7] 

First step  

We assemble the source symbols on a row in order of 

increasing likelihood from left to right.  

Second step  

Let us denote   and   the two basis symbols of lowest 

likelihoods    and    in the list of the source words. We 

association   and   together with two subdivisions into a 

node which substitutes   and   with probability task equal 

to      .  and  are removed from the list and substituted 

by the node. [8] 

Third step  
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We apply the process of the second step until the likelihood 

assignment is equal to 1. Then, the conforming node is the 

root of the binary tree. 

 

1.4.2 The Lempel-Ziv Algorithm 

1.4.2.1 Principle 

The LZ’78 is a dictionary-based compression algorithm that 

maintains an explicit dictionary. The codewords output by 

the algorithm consist of two elements: an index referring to 

the longest matching dictionary entry and the first non-

matching symbol.[9][10] 

In addition to outputting the codeword for 

storage/transmission, the algorithm also adds the index and 

symbol pair to the dictionary. When a symbol that not yet in 

the dictionary is encountered, the codeword has the index 

value 0 and it is added to the dictionary as well. With this 

method, the algorithm gradually builds up a dictionary.[11] 

1.4.2.2 Algorithm 

w := NIL; 

while (there is input) 

{ 

K := next symbol from input; 

if (wK exists in the dictionary)  

{ 

w := wK; 

} 

else 

{ 

output (index(w), K); 

add wK to the dictionary; 

w := NIL; 

} 

} 

This simplified pseudo-code version of the algorithm does 

not prevent the dictionary from growing forever. There are 

various solutions to limit dictionary size, the easiest being to 

stop adding entries and continue like a static dictionary 

coder or to throw the dictionary away and start from scratch 

after a certain number of entries has been reached. [11] 

V. IMPLEMENTATION 

Despite the problems discussed above, LZ78 is among the 

more available universal complexity estimators. However, 

complexity estimation using LZ78 usually quantities to 

performing the entire compression procedure and comparing 

inverse density ratios as a measure of complexity. In fact, 

the simple Lempel Ziv partition covers enough data to 

estimate complexity without execution the entire 

compression encoding procedure. Central to the LZ78 

algorithm is the partitioning scheme familiarized by Ziv and 

Lempel. The LZ78 algorithm partitions a string into prefixes 

that it hasn’t seen before, forming a codebook that will 

(given a long adequate string with enough repetition) enable 

long strings to be encoded with small indexes. Consider an 

example to illustrate how this algorithm works: LZ 

partitioning of the string is, 

1011010010011010010011101001001100010 

Performed by injecting commas each time a sub-string that 

has not yet been recognized is seen. The following partition 

results: [12] 

1,0,11,01,00,10,011,010,0100,111,01001,001,100,010 

The nodes noticeable in black of the five level tree are nodes 

confined in the LZ78 partition of the example string. Nodes 

that are not occupied in designate code words or phrases that 

are not controlled in the LZ78 partition. Each node or phrase 

happens precisely once in the string with the exclusion of 

the last phrase which may be a recurrence of a beforehand 

seen node. Good compression (low complexity estimation) 

outcomes when the LZ78 partition contains a deep, sparse 

tree, while poor compression (high complexity estimation) 

results from strings that are less deep and extra completely 

occupied at each level Maximum compression of LZ78 is 

attained if all code words are children of the same branch, 

for example, the string: 

1101011011101101011001011000 partitioned as 

1,10,101,1011,10110,101100,1011000 will be extremely 

compressed by LZ78. However, the following string will not 

be compressed by LZ78.  

1010110100100101110111000001= 1,0,10,11,01,00,100, 

101, 110, 111, 000, 001 

Since the presentation of LZ78 will be determined by the 

partition, by absorbed exclusively on the tree partition 

features of the algorithm we can attain better efficiency 

when using LZ78 to approximation complexity. The vital 

metric is the number of phrases in the partition. The 

minimum number of sub-strings (commas) in an LZ78 

partition is the number   such that each sub string is one bit 

longer than the previous sub string[12]:  

     
      

 
 

  

 
 

 

 

 

   

 

Solving this quadratic calculation and taking the positive 

solution for   we have: 

            
        

 
 

For strings of any considerable length, the constant terms 

become insignificant and a good estimation of the lower 

bound results from ignoring the preservative constant terms: 

      

Since we know the negligible number of phrases a string of 

length   can have, we can standardize the number of phrases 

in the LZ78 partition based on this minimum for use in 

crucial a normalized complexity estimator. We define a the 

metric C as an estimator of complexity using the LZ78 

partition given a string of length   bits and an LZ78 

partition of M phrases: 
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This metric allows use of the LZ78 partitioning algorithm to 

estimate complexity, regularized by length, providing an 

estimator similar to compression ratio, but without the 

necessity for the overhead to actually complete the LZ78 

compression.[12] 

 

 

 

 

 

VI. RESULTS 

Simulations were done using MATLAB. The following 

menu is generated using MATLAB. 

-------------------------------- 

####### LZ'78 Algorithm ####### 

-------------------------------- 

[1] Encode user-defined message. 

[2] Encode pre-defined msg #1. 

[3] Encode pre-defined msg #2. 

[4] Encode pre-defined msg #3. 

[5] Decode a sequence. 

[6] Exit. 

-------------------------------- 

################################ 

-------------------------------- 

Enter your option: 

 

The user needs to select an option to continue. The first 

option will encode a user-defined message using LZ’78 

encoding. The fifth option decodes an already encoded 

sequence. The second, third and fourth options encode pre-

defined messages of length 1 lakh, 2 lakh and 3 lakh 

respectively. These options are required as it is very difficult 

to enter large sequences of data for testing. The last option 

(sixth) is used to terminate the Matlab program. 

The MATLAB following program illustrates the encoding 

of a user-defined message – “Hello World!” 

-------------------------------- 

####### LZ'78 Algorithm ####### 

-------------------------------- 

[1] Encode user-defined message. 

[2] Encode pre-defined msg #1. 

[3] Encode pre-defined msg #2. 

[4] Encode pre-defined msg #3. 

[5] Decode a sequence. 

[6] Exit. 

-------------------------------- 

################################ 

-------------------------------- 

Enter your option: 1 

-------------------------------- 

################################ 

-------------------------------- 

 

Enter the message to encode: Hello World! 

Do you want to use Hashing? (Y/N) [Y]: Y 

Do you want to find Complexity? (Y/N) [Y]: Y 

 

Text Message (12 characters):- 

Hello World! 

 

Binary Message (96 characters):- 

010010000110010101101100011011000110111100100000

010101110110111101110010011011000110010000100001 

 

Encoded Message (137 characters):- 

000101010001100101011100111000110010011111010010

101011010111001010010000001001001100100111011100

10101000100010100100101110111110000111011 

 

Total Phrases in the Code Book = 29 

 

Time taken to Encode = 00:00:00.049 (0.049489 seconds) 

 

Length of input Message (Total characters) = 12 

Length of Message after binary conversion = 96 

Length of Message after LZ'78 Encoding = 137 

 

Binary Message Complexity = 16 

Binary Message Normalised Complexity = 1.0975 

 

Encoded Message Complexity = 21 

Encoded Message Normalised Complexity = 1.088 

 

Compression Ratio -> 142.71 % 

 

You can see above that we used hashing as the option “Do 

you want to use Hashing? (Y/N) [Y]:” was set to “Y” or 

Yes. The message “Hello World!” consists of twelve 

characters (including SPACE) which were first converted to 

binary using UTF8 encoding and then the binary sequence 

was encoded using LZ’78 (explained earlier) using hashing. 

Code book size was 29. This means there were in total 29 

unique phrases in the message to be encoded. Time taken for 

encoding was 0.049489seconds. 

Compression ratio is 142.71%. Ideally, we want this ratio to 

be less than 100%. Less ratio implies that the encoded 

sequence length is less than the original message length (in 

binary) and that the data is compressed. 

                 

 
                                

                                  
       

Similarly, the below program will decode the above 

generated encoded sequence to get the original message 

back. 

-------------------------------- 

####### LZ'78 Algorithm ####### 

-------------------------------- 

[1] Encode user-defined message. 
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[2] Encode pre-defined msg #1. 

[3] Encode pre-defined msg #2. 

[4] Encode pre-defined msg #3. 

[5] Decode a sequence. 

[6] Exit. 

-------------------------------- 

################################ 

-------------------------------- 

Enter your option: 5 

-------------------------------- 

################################ 

-------------------------------- 

 

Enter the sequence to decode: 

000101010001100101011100111000110010011111010010

101011010111001010010000001001001100100111011100

10101000100010100100101110111110000111011 

 

Decoded Message :- 

Hello World! 

 

Time taken to Decode = 00:00:00.022 (0.021591 seconds) 

 

Length of Encoded Sequence = 137 

Length of Decoded Message = 12 

 

Similarly, the same process was repeated for pre-defined 

messages and the following results were obtained. 

Table 1: Compression Ratio comparison for different 

message length.  

Input 

Binary 

Message 

Length 

Encoded 

Message 

Length 

Code Book 

Entries 

Compression 

Ratio 

801,096 611,609 39,833 76.35 % 

1,602,200 1,170,977 72,337 73.09 % 

2,402,448 1,706,459 102,086 71.03 % 

 

Table 2: Encoding time comparison with and without 

Hashing.  

Input Message 

Length 

(Binary Message) 

Time taken to Encode 

With Hashing Without Hashing 

801,096 0.4150 seconds 45.5558 seconds 

1,602,200 1.0525 seconds 157.4849 seconds 

2,402,448 1.3753 seconds 319.1074 seconds 

 

We can see from the results obtained in table 1, larger the 

input message length more is the compression ratio. Also the 

number of code book entries increase with input message 

length. With such a huge amount of entries it is virtually 

impossible for any system to perform a real-time search. 

Form the results obtained in table 2, we can see that with 

increase in the number of codebook entries the encoding 

time increases from 45 seconds to nearly 320 seconds 

without hashing. But as explained earlier about fastness of 

hashing, we can see that the encoding time remains almost 

unchanged with increase in number of codebook entries. It 

increases but slowly as compared to the one without 

hashing. If we can encode this fast with LZ’78, this implies 

we can find the codebook size swiftly, which in turn is the 

complexity estimation of a string as explained earlier. 

Hence, our results. 
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