
© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002 

IJIRT 143130 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 641 
 

DISCRETIZATION 

 

Rahul Yadav 

Computer Science Department 

Dronacharya College of Engineering , MDU, Gurgaon, Haryana 

 

Abstract- Discretization is an important preprocessing 

technique used in many knowledge discovery and data 

mining tasks. Its main goal is to transform a set of 

continuous aspects into discrete ones, by associating 

categorical values to intervals and thus transforming 

numerical data into qualitative data. In this manner, 

symbolic data mining algorithms can be applied over 

continuous data and the representation of information 

is simplified, making it more brief and specific. This 

paper objective are to study terms and symbolisations 

related to discretization, a typical discretization process 

and discretization current status. We have also 

discussed the future research for discretization. 

 

Index Terms-  Discretization, continuous aspects, 

symbolisation, research 

I. INTRODUCTION 

Data usually comes in a mixed format: nominal, 

discrete, and/or continuous. Discrete and continuous 

data are ordinal data types with orders among the 

values, while nominal values do not possess any 

order amongst them. Discrete values are intervals in a 

continuous spectrum of values. While the number of 

continuous values for an aspect can be infinitely 

many, the number of discrete values is often few or 

finite. The two types of values make a difference in 

learning classification trees/rules. One example of 

decision tree induction can further illustrate the 

difference between the two data types. When a 

decision tree is induced, one feature is chosen to 

branch on its values. With the coexistence of 

continuous and discrete features, normally, a 

continuous feature will be chosen as it has more 

values than features of other types do. By choosing a 

continuous feature, the next level of a tree can 

quickly reach a “pure” state—with all instances in a 

child/leaf node belonging to one class. In many cases, 

this is equivalent to a table-lookup along one 

dimension which leads to poor performance of a 

classifier. Therefore it is certainly not wise to use 

continuous values to split a node. There is a need to 

discretize continuous features either before the 

decision tree induction or during the process of tree 

building. Widely used systems such as C4.5 

(Quinlan, 1993) and             

CART(Breimanetal.,1984)organise various ways to 

avoid using continuous values directly. There are 

many other advantages of using discrete values over 

continuous ones. Discrete features are closer to a 

knowledge-level representation (Simon, 1981) than 

continuous ones. Data can also be reduced and 

simplified through discretization. For both users and 

experts, discrete features are easier to understand, 

use, and explain. As reported in a study(Dougherty et 

al., 1995), discretization makes learning more 

accurate and faster. In general, obtained results 

(decision trees, induction rules) using discrete 

features are usually more compact, shorter and more 

accurate than using continuous ones, hence the 

results can be more closely examined, compared, 

used and reused. In addition to the many advantages 

of having discrete data over continuous one, a suite 

of classification learning algorithms can only deal 

with discrete data. Discretization is a process of 

quantizing continuous attributes. The successes of 

discretization can significantly extend the borders of 

many learning algorithms. 

II. TERMS AND SYMBOLISATION 

Feature: “Feature” or “Attribute” or “Variable” refers 

to an aspect of the data. Usually before collecting 

data, features are specified or chosen. Features can be 

discrete, continuous, or nominal. In this paper we are 

interested in the process of discretizing continuous 

features. Hereafter M stands for the number of 

features in the data. 

Instance: “Instance” or “Tuple” or “Record” or “Data 

point” refers to a single collection of feature values 

for all features. A set of instances makes a data set. 

Usually a data set is in a matrix form where a row 



© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002 

IJIRT 143130 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 642 
 

corresponds to an instance and a column corresponds 

to a feature. Here afterwards N is the number of 

instances in the data. 

Cut-point: The term “cut-point” refers to a real value 

within the range of continuous values that divides the 

range into two breaks, one interval is less than or 

equal to the cut- point and the other interval is greater 

than the cut-point. For example, a continuous interval 

[a, b] is partitioned into [a, c] and (c, b], where the 

value c is a cut-point. Cut-point is also known as 

split-point. 

Arity: The term “arity” in the discretization context 

means the number of intervals or partitions. Before 

discretization of a continuous feature, arity can be set 

to k—the number of partitions in the continuous 

features. The maximum number of cut-points is k − 

1. Discretization process reduces the arity but there is 

a trade-off between arity and its effect on the 

accuracy of classification and other task. A higher 

arity can make the understanding of a feature more 

difficult while a very low arity may affect predictive 

accuracy negatively.  

III. CURRENT STATUS 

In earlier days simple techniques were used such as 

equal-width and equal-frequency (or, a form of 

binning) to discretize. As the need for accurate and 

efficient classification grew, the technology for 

discretization develops rapidly. Over the years, many 

discretization procedures have been proposed and 

tested to show that discretization has the probable to 

reduce the amount of data while retaining or even 

improving predictive accuracy. Discretization 

methods have been developed along different lines 

due to different needs: supervised vs. unsupervised, 

dynamic vs. static, global vs. local, splitting (top-

down) vs. merging (bottom- up), and direct vs. 

incremental. As we know, data can be controlled or 

unsupervised depending on whether it has class 

information. Likewise, supervised discretization 

considers class information while unsupervised 

discretization does not; unsupervised discretization is 

seen in earlier methods like equal-width and equal-

frequency. In the unsupervised methods, continuous 

ranges are divided into subranges by the user 

specified width (range of values) or frequency 

(number of occurrences in each interval).This may 

not give good results in cases where the distribution 

of the continuous values is not uniform. Furthermore 

it is vulnerable to outliers as they affect the ranges 

significantly (Catlett, 1991).To overcome this 

shortcoming, controlled discretization methods were 

introduced and class information is used to find the 

proper intervals caused by cut-points. Different 

methods have been devised to use this class 

information for finding meaningful intervals in 

continuous attributes.  

Supervised and unsupervised discretization have their 

different uses. If no class information is available, 

unsupervised discretization is the sole choice. There 

are not many unsupervised methods available in the 

works which may be attributed to the fact that 

discretization is commonly associated with the 

classification task. One can also view the usage of 

discretization methods as dynamic or static. A 

dynamic method would discretize continuous values 

when a classifier is being built, such as in C4.5 

(Quinlan, 1993) while in the static approach 

discretization is done prior to the classification task. 

There is a comparison between dynamic and static 

methods in Dougherty et al. (1995). The authors 

reported mixed presentation when C4.5 was tested 

with and without discretized features (static vs. 

dynamic).  

Another contrast is local vs. global. A local method 

would discretize in a localized region of the instance 

space (i.e. a subset of instances) while a global 

discretization method uses the entire instance space 

to discretize (Chmielewski and Grzymala-Busse, 

1994). So, a local method is usually associated with a 

dynamic discretization method in which only a region 

of instance space is used for discretization.  

Discretization methods can also be grouped in terms 

of top-down or bottom-up. Top-down methods start 

with an empty list of cut-points (or split-points) and 

keep on adding new ones to the list by ‘splitting’ 

breaks as the discretization progresses. Bottom-up 

methods start with the complete list of all the 

continuous values of the feature as cut-points and 

remove some of them by ‘merging’ intervals as the 

discretization progresses.  

Another measurement of discretization methods is 

direct vs. incremental. Direct methods divide the 

range of k intervals simultaneously (i.e., equal-width 

and equal-frequency), needing an additional input 

from the user to control the number of intervals. 

Incremental methods begin with a simple 

discretization and pass through an improvement 



© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002 

IJIRT 143130 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 643 
 

process, needing an additional criterion to know 

when to stop discretizing (Cerquides and Mantaras, 

1997). 

 As shown above, there are many discretization 

methods and many different dimensions to group 

them. A  user of discretization often finds it difficult 

to choose a suitable technique for the data on hand. 

There have been a few attempts (Dougherty et al., 

1995; Cerquides and Mantaras, 1997) to help 

improve the difficulty. We carry on with this key 

objective to make a comprehensive study that 

includes the definition of a discretization process, 

performance measures, and extensive comparison. 

Contributions of this work are: 

1. An abstract description of a typical discretization 

process, 

2. A new hierarchical framework to categorize 

existing discretization methods in the literature,  

3. A methodical demonstration of different results by 

various discretization methods using a standard data 

set, 

4. A comparison of nine representative discretization 

methods chosen from the framework along two 

dimensions: times and error rates of a learning 

algorithm for classification over publically available 

benchmark data sets,  

5. Detailed examination of comparative results, and 

 6. Some guidelines as to which method to use under 

different circumstances, and directions for future 

research and development. 

IV. TYPICAL DISCRETIZATION PROCESS 

By “typical” we mean univariate discretization. 

Discretization can be univariate or multivariate. 

Univariate discretization quantifies one continuous 

feature at a time while multivariate discretization 

considers simultaneously multiple features. We 

mainly consider univariate discretization throughout 

this paper and discuss more about multivariate 

discretization briefly at the end as a postponement of 

univariate discretization. 

 

 
 



© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002 

IJIRT 143130 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 644 
 

A typical discretization process broadly consists of 

four steps (seen in figure above): 

(1) Sorting the continuous values of the feature to be 

discretized, 

(2) Evaluating a cut-point for splitting or adjacent 

intervals for merging,  

(3) According to some criterion, splitting or merging 

intervals of continuous value, and  

(4) Finally stopping at some point.  

 

Sorting: The continuous value for a feature is sorted 

in either descending or ascending order. Sorting can 

be computationally very expensive if care is not 

taken in executing it with discretization. It is 

important to speed up the discretization process by 

selecting suitable sorting algorithms. Many sorting 

algorithms can be found in classic data structures and 

algorithms books. Among these “Quick-sort” is an 

efficient sorting algorithm with a time complexity of 

O(N log N). 

Another way to improve efficiency is to avoid sorting 

a feature’s values repetitively. If sorting is done once 

and for all at the beginning of discretization, it is a 

global treatment and can be applied when the entire 

instance space is used for discretization. If sorting is 

done at each iteration of a process, it is a native 

treatment in which only a region of entire instance 

space is considered for discretization. 

Choosing a cut-point:  After sorting, the next step in 

the discretization process is to find the best “cut-

point” to riven a range of continuous values or the 

best pair of adjacent intervals to merge. One classic 

evaluation function is to determine the correlation of 

a split or a merge with the class label. There are 

numerous evaluation functions found in the literature 

such as entropy measures and arithmetical measures.  

Splitting/merging:  As we know, in a top-down 

approach, intervals are split while for a bottom-up 

approach intervals are merged. For splitting it is 

required to evaluate ‘cut- points’ and to choose the 

best one and split the range of continuous values into 

two partitions. Discretization continues with each 

part (increased by one) until a stopping standard is 

satisfied. Similarly for merging, adjacent intervals are 

evaluated to find the best pair of intervals to merge in 

each iteration. Discretization continues with the 

reduced number (decreased by one) of intervals until 

the stopping standard is satisfied. 

Stopping criteria:  A stopping criterion specifies 

when to stop the discretization process. It is usually 

ruled by a trade-off between lower arity with a better 

understanding but less accuracy and a higher arity 

with a poorer understanding but higher accuracy. We 

may consider k to be an upper bound for the arity of 

the subsequent discretization. In practice the upper 

bound k is set much less than N, assuming there is no 

repetition of continuous value for a feature. A 

stopping criterion can be very simple such as fixing 

the number of intervals at the beginning or a more 

complex one like assessing a function. We describe 

different stopping criteria in the next section. 

V. FUTURE RESEARCH 

Every discretization method takes it for arranged that 

each feature independently determines the class. 

Therefore, all these methods are univariate methods 

for the sake of efficiency. As we know, the 

assumption may not be valid. When we discretize, we 

may need to consider multiple features at a time, the 

so-called multivariate discretization. Doing so would 

inevitably increase time difficulty for discretization. 

With the availability of more powerful parallel 

computers or computer clusters, we may examine the 

possibility of using these computers for multivariate 

discretization. Parallel discretization algorithms are 

surely welcome when a large number of continuous 

features should be quantized. Can we extend the 

methods here to parallelized versions? With the 

feature independence supposition, it seems practical. 

Noise handling is another important issue of 

discretization in practice. To allow a certain degree of 

tolerance via thresholding is a common practice for 

noise handling in the discretization methods. 

REFERENCES 

[1] Huan Liu, Farhad Hussain, Chew Limtan, 

Manoranjan Das. “Discretization: An Enabling 

Technique” 

[2] Salvador Garcıa, Julian Luengo, Jose Antonio 

Saez, Victoria Lopez, and Francisco Herrera. “A 

Survey of Discretization Techniques: Taxonomy 

and Empirical Analysis in Supervised Learning” 

[3] Fayyad, U. and Irani, K. 1993. Multi-interval 

discretization of continuous-valued attributes for 

classification learning. In Proc. Thirteenth 

International Joint Conference on Artificial 



© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002 

IJIRT 143130 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 645 
 

Intelligence. San Mateo, CA: Morgan 

Kaufmann. 1022–1027. 

[4] http://en.wikipedia.org/wiki/Discretization 

[5] Pfahringer, B. 1995a. Compression-based 

discretization of continuous attributes. In Proc. 

Twelfth International Conference on Machine 

Learning. San Francisco, CA: Morgan 

Kaufmann, pp. 456–463. 

[6] Liu, H. and Setiono, R. 1997. Feature selection 

and discretization. IEEE Transactios on 

Knowledge and Data Engineering, 9:1–4. 

 

 

 

 

 

 

 

 

 


