
© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 661

Survey on G-MVC Architecture by providing View Rules to

handle the Action Events of Controller and States of Model

Vishal Ketankumar Shah

M.E. Computer Engineering, L.J.I.E.T

Abstract- In feats to support the growing trend of the Java

Programming language and to promote generalized MVC

architecture of web-based and mobile based web service for

fastest development of projects and products in less time. Every

software applications that interact with a user require a

graphical user interface (GUI) and hidden basic data operations.

Model-View-Controller (MVC) is a common design pattern to

integrate a GUI with the application based domain logic and data

source operation. MVC separates the representation of the

application domain logic (Model) from the display page of the

application’s state (View) and graphical user interaction control

(Controller). The aim of this research focuses on generalized

MVC (G-MVC) architecture which is built on the top of MVC

design pattern. Our G-MVC uses for developing web applications

and JSON and XML based web service for mobile applications

without separate code of domain logics and business logics. Our

proposed architecture acts like a mediator between application's

states and database. It saves time for coding of programmer as

well as reduces the lines of code by using G-MVC architecture.

This architecture supports JSON and XML based web services

interact to develop mobile based applications through Universal

Resource Locator (URL).

I. INTRODUCTION

In software development, a design pattern is a universal

repeatable solution to a usually occurring problem in the

process of implementing software solutions. A design pattern

isn’t finished design that can be transformed directly into

code. It is template for how to solve a problem that can be

used in many trail and errors over a significant period of time.

Same design pattern use for developing multiple domain

applications without changing the application logic or

workflow logic to interact with domain and infrastructure

components according to user requirements. In design pattern,

the business logic should be placed in the model (M) of MVC.

Every software program that requires at least a bit of

interactivity with users requires a user interface. This makes

the integration of the user interface with the application

domain a recurring engineering problem. Design patterns

provide generic solution schemes for recurring design

problems, offering reference materials that give engineers

access to the field’s systematic knowledge [1]. It’s one kind of

software architecture – the structure of the system – that

separates domain/application/business logic from the rest of

the user interface. It does this by separating the application

into three parts: the model, the view, the controller

Model-View-Controller (MVC) is a software design pattern.

Using this pattern, the system is divided into three modules,

every module has own function. This is a typical multi-tier

structure designing ideas. MVC is a software architectural

design mostly for implementing the user interfaces. It divides

a given software application into three interconnection parts,

so as to separate internal representation of information from

the ways that information to or accepted from the user.[3]

1. The Model: The model is the database

communication and logical structure. It deals

with the actual data in the database with high

level associated classes. The logic for inserting,

updating, deleting and retrieving data is written

in the model.

2. The View: The view deals with User Interface

that the users get to interact with the user. Using

view the user can interact with in application

screens and can send multiple requests to the

server for performing operations.

3. The Controller: The controller is the mediator

between view and model. It takes request from

the user and interact with the model to give

response back to the users.

In simple manner to say MVC (Model-View-Controller) as

“SMART Model, THIN Controller, and DUMB Views”.

There is the relationship of the model, the view and the

controller [4], shown as Fig.

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 662

Controller

Model View

MVC

Today’s current trend to use MVC design pattern

(architecture) use in multiple types of application which are

below:

a. Web Based MVC

b. Desktop Based MVC

c. Mobile Based MVC

In all above MVC, “Model” mainly use for the any of

database operation for the application and connected with the

backed portion of the application structure. “View” is font end

which is providing the inputs for performing the operation

from user. In web application “View” is HTML, HTML5,

CSS, CSS3, JS, JQuery controls. In desktop application

“View” is graphical based swing input controls and ActiveX

controls. In mobile application is XML based controls in the

android, iPhone, windows, WAP. Controller to manage the

user inputs which comes from the view side and decide to

handle the methods of model for which kind of methods to

operate for the database tables. For mobile and desktop based

application to create JSON, XML services which are work as

message based MVC which are deployed on the web server.

So services are part of the web application and communicate

with desktop and mobile application for the central data

models.

II. BACKGROUND THEORY OF MVC

MVC was one of the seminal insights in the early

development of graphical user interfaces, and one of the first

approaches to describe and implement software constructs in

terms of their responsibilities.

Trygve Reenskaug introduced MVC into Smaltalk-76 while

visiting Xerox Parc[4][5] in the 1970s. In the 1980s, Jim

Althoff and others implemented a version of MVC for the

Smaltalk-80 class library. It was only later, in a 1988 article in

The Journal of Object Technology, that MVC was expressed

as a general concepts. [6] The three key components of the

Smalltalk’80 MVC pattern are Model, View and Controller.

The Model component is responsible for the domain data and

logic. This component has no reference to the other

components of the triad. As such, the application logic does

not depend on the presentation of domain data. The View

component is responsible for displaying model data. The last

one, Controller is responsible for handling user input.

a. View display data from the Model

b. View shows the model and reforms itself when some

data is changed

c. Domain data

d. Controller shows the model and triggers model

methods on certain user actions

e. Controller handles user inputs

View and Controller work as a pair allowing the user to

interact with via the user interface. For example, the user

interface may provide a text box allowing the user to enter a

user name. The View is responsible for rendering the text box.

The user can change the text and press buttons (e.g., enter) –

such events are handled by the Controller. The Model

maintains the domain data. Often, the application has one

Model and a set of View-Controller pairs working with it.

Although View and Controller work in pairs, they are

considered as two separate entities with minimal coupling.

That is, displaying data and handling user input are treated as

distinct activities enhancing separation of concerns.

III. TYPES OF MVC

The MVC pattern has subsequently evolved, giving rise to

variants such as HMVC, MVA, MVP, MVVM, and others that

adapted MVC to different contexts.

Presentation

Controller

Abstraction

View Controller

Model

a

b

c

d

e

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 663

 HMVC – Hierarchical model-view-controller

 MVA – Model-view-adapter

 MVP – Model-view-presenter

 MVVM – Model-view-view-model

The use of the MVC pattern in web applications exploded in

popularity after the introduction of spring framework for Java.

The introduction of the frameworks Rails and Django, both of

which had a strong emphasis on rapid deployment, increased

its popularity outside the traditional enterprise environment in

which MVC has long been popular. MVC web frameworks

now hold large market shares relative to non-MVC web

toolkits.[4]

IV. HMVC

In this architecture, there are multiple variation of MVC,

MVA, and MVP. This kind of MVC called as Presentation-

Abstraction-Controller (PAC). The controller selects the

model and then selects the view, so there is an approval

mechanism by the controller. The model presents the view

from accessing the data source directly.

This above figure as PAC put as hierarchical level of tops

level, intermediator level, and bottom level. There are multiple

intermediator level as multiple levels for their business

application logics.

V. MVA

In complex programming applications that presents large

amount of data to users, developers often wish to separate data

model and user interface view. So that changes to user

interface will not affect data handling and that the data can be

recognized without changing the user interface. The Adapter

holds a pointer both to the Model and to the View and directly

calls methods on both. At the same time, it attaches itself as a

listener both to the Model and to the View in order to receive

events. It receives property change events from the Model and

action events (checkbox ticked, text entered, etc.) from the

View, and then routes appropriate changes to the other side.

The Adapter is entirely responsible for keeping the Model and

the View in sync; the Model and View are both relatively

dumb structures, knowing nothing about the other

a. Control all logic data and view components as

listener

VI. MVP

The Model component represents pure domain data. As in

earlier patterns, Model is unaware of the presentation logic,

but it still provides notification when the data is changed. The

role of View in MVP remained almost unchanged. View is

responsible for displaying the data on the user interface. It also

supports basic handling of user input: it delegates user actions

to the Presenter by direct calls. The Presenter is responsible

for keeping the application synchronized. Presenter handles

user input, invokes domain methods, keeps the Model in

consistent state and provides extra logic to update the View

when necessary.

a. Presentation has direct access to view

b. View routes events to Presenter

c. Purely domain data

d. Simple 2-way data binding View can reflect and

modify the Model data

Presenter

Model

View

d

b a c

Model

Adapter

View

a

PAC

PAC PAC

PAC PAC PAC

Top Level

Agent

Intermediator Level

Agent

Bottom Level

Agent

Presentation

Controller

Abstraction

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 664

VII. MVVM

The pattern has linear structure. The View is responsible for

rendering the user interface; it can observe the View Model,

trigger it methods and modify its properties when needed.

View Model is responsible for handling view state and user

interaction; it has access to the domain Model, so it could

work with domain data and invoke business logic. View

Model is unaware of View. Model is responsible for handling

domain data and is unaware of View Model. This approach

allows creating different views for the same data and observer

synchronization allows this views working simultaneously.

a. View is bounded to View Model in a declarative

manner, contains no extra logics

b. Handles view state and work with domain data

a. Application model mediates the cooperation and

handles View state

b. Application model observes the model and triggers

its methods when necessary

c. Domain model

VIII. TYPES OF MVC ARCHITECTURE MODEL

Architecture is complex structure to define or design very

carefully based on different layers. And provide the relation

between the layers to interact with one another. This structure

is define in Object Oriented Programming and Structure

Programing language for developing web, mobile and desktop

based applications. In software engineering, a design pattern is

a general reusable solution to a commonly occurring problem

within a given context in software design [9], which are

known as architecture pattern. Mainly architecture (design

pattern) has algorithm strategies, computation process,

execution environment, implementation strategy, and global

structure in the domain and interconnections. There are mainly

two types of MVC architecture to be work for developing any

of application for any of context.

 Push MVC model

 Pull MVC model

Push MVC model

According to the push model, user actions should be

interpreted by the Controller which will generate the data and

push it on to the View, hence the “push”. In short, "push"

application, a server is pushing or sending data to clients at its

own initiation. The classic example is that of two different

stock quote programs. In a push application, the server sends a

message to the client whenever the price of the stock changes.

As per J2EE perspective, this is where the framework creates

context objects what are "pushed" or made available to the

templating language like JSP's allowing them either via tags or

scripting to get their values and display them on the page.

Struts and Expresso a good examples of this. In Expresso you

create Output objects that are made just for rendering the

View.

In Java based framework, there are Struts 1.X and String

MVC following Push based MVC model.

Pull MVC model

According to the pull model assumes that the user requires

some kind of output (like a list items from the database). The

View will access the Controller in order to get the data it

needs in order to display the user the kind of output he

requested. This is much like the View is “pulling” data from

the Controller. In short, "pull" application, the server is pulling

or waiting for and receiving messages initiated by clients. The

classic example is that of two different stock quote programs.

In a pull application, the server will respond to client requests

to get the current price of the stock.

As per J2EE perspective, this is where you have one or a few

objects that are made available to all templates. The big

difference is the java developer does not need to create any

sort of output object, they just make backend model objects

available to the View templates. Webwork and Maverick are a

good example of this, they a provide accessor

methods(getters/setters) in their Action/Model classes that

allow the View to "pull" whatever they like as long as they

know of the API for that Action.

View View Model Model

a b

View

Controller

Application

Model
Model

a

b

c

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 665

In Java based framework, there is Struts 2.X following Push

based MVC model.

Example with Mechanism

Web applications are stateless as they use the stateless

protocol HTTP. So, once a request is served to the client then

there is no direct way of notifying him/her about the changes

made to the Model. To handle this scenario there are two

mechanisms -

Push Mechanism: forcibly sending the response back to the

client whenever any change to the model happens, but this is

not very easy to implement as the server would require to

maintain client info. There are other challenges as well. HTTP

requests are processed by first establishing the connection to

the server, sending the requests, receiving the response, and

finally terminating the connection. Once the request has been

served the connection is lost. How would the server then send

back the updated response? Since the HTTP protocol is

stateless the client may simply close the browser window

without even notifying the server that it no longer needs any

updated information.

Pull Mechanism: this mechanism is normally used to handle

the above mentioned scenario. This requires the client to pull

the updated data rather than the server pushing the updated

data to the client. Either by having a simple button (clicking

which will make another fresh request to the server and the

client would get the updated data in response) or by having a

script which would automatically be making the HTTP

requests - maybe periodically after a certain time-interval.

This is how Live Cricket Scores are displayed.

IX. LITERATURE SURVEY

In “Web Application Development Using

Model/View/Controller Design Pattern [10]” by Avraham

Leff, Jemes T. Rayfield introduces the concept of flexible We-

Application partitioning, a programming model and

implementation infrastructure that allows developers to apply

the Model/View/Controller design pattern in a partition-

independent manner and location dependent environment.

Applications are developed are tested in a single address-

space; they can then be deployed to various client/server

architectures and partitioning decisions without changing the

application’s source code. Fwap supports single-mvc(smvc),

thin-client and dual-mvc (dmvc) architectures implementing

the algorithms and infrastructure needed to enable

fwaplications to scale over non-trivial application Models. We

are also working with a customer to validate the fwap

concepts and implementation.[10]

In “Combining HTML 5 with MVC Framework to Simplify

Real-Time Collaboration for Web Development [11]” by

Yuehui Yu, Lei Ning, Weizhong Liu proposes a joint

framework for HTML 5 specification and a double model

architecture for real-time web collaboration development. [11]

A Simple Collaboration Modeling Language is developed to

illustrate the shared model concept. [11] With client-side

library and server-side components, programmers are able to

concentrate on collaborative logic instead of application

details. These concepts can be presented in SCML and

decomposed into JavaScript objects respectively. By using our

RTWCC library, these objects have been given this ability: as

a front-end representative to the shared states. [11] The rest

work is the development of the user interface, which is

important for the user’s experience in collaborative

environment but not mentioned in the above statements. An

ordinary programmer can do this job on the API of our (Real

Time Web Collaboration Client) RTWCC library. [11] Same

as “A Web Architectural Study of HTML5 with MVC

Framework [12]” by Jatin Chakra proposes The HTML5

based MVC model is a view based model that provide the

platform independent development model.[12] Also include

this HTML5 feature representation for Mobile and Web based

application under MVC framework.[12] HTML5 provides the

structural and presentation based changes to the web contents

over the mobile and web system.[12] HTML5 integrated MVC

architecture and different components of MVC model under

the view point of analysis.

In “A Database and Web Application Based on MVC

Architecture [13]” by Diana M. Selfa, Maya Carrillo, Ma. del

Rocío Boone purpose of illustrating a successful application

built under MVC, in this work we introduce different phases

of analysis, design and implementation of a database and web

application using UML.[13] As central component of the

application, it has a database made up by fifteen relations and

a user interface supported by seventeen web pages.[13] It was

also evident that the construction of clear and understandable

models for the users and software engineers allows the

construction of quality systems with predictable development

times.[13]

In “Balanced MVC Architecture for Developing Service-

based Mobile Applications [14]” by Hyun Jung La and Soo

Dong Kim propose a unique, ideal and practical architecture

for service-based mobile applications, called balanced Model-

View-Controller (MVC) architecture.[8] The architecture is

devised by adopting three architectural principles; being thin-

client, being layered with MVC, and being balanced between

client side and server side. define methods to partition the

functionality optimally between client and provider sides, and

to design a balanced MVC architecture for Service-based

Mobile Applications (SMA) by adopting three architectural

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 666

principles; being thin-client, being layered with MVC, and

being balanced between client side and server side. [8] The

methods are based on artifacts such as use case model and

object model to provide the high quality of mobile based

application based on the effectively services.

In “Building Desktop Applications with Web Services in a

Message-based MVC Paradigm [7]” by Xiaohong Qiu present

an approach of building desktop applications with Web

Services in an explicit message-based MVC paradigm. [7] By

integrating with our publish/subscribe messaging middleware,

it makes Scalable Vector Graphics (SVG) browser (a

Microsoft PowerPoint like client application) with Web

Service style interfaces universally accessible from different

client platforms.[7] As SVG is an application of theW3C

DOM, we can generalize the approach for other W3C or

similar DOM based applications. Our approach suggests that

one need not develop special “collaborative” applications.

Rather any application developed as a Web service can be

made collaborative using the tools and architectural principles.

[7]

In “Implementation of a Five-tiers Architecture Based on

Struts and Hibernate for Web Applications [14]” by LI Zhuo-

ling, ZHU Shi-don, ZHANG Xin present an efficient five-tiers

architecture based on integrating Struts and Hibernate

frameworks, described the implementation of a web

application in details as a sample focusing on utilizing [14]

Presentation layer, Controller layer, Business Logic layer,

Data Persistence layer and Database layer. Struts can high

coupling problems among logic, business and data, together

with that Hibernate can deal with the object persistence and

encapsulate database operations. In this context, MVC pattern

can be achieved by using Struts framework, and database

operations can be encapsulated by utilizing Hibernate

framework. [14] In “J2EE and MVC Architecture [15]” by

Manish Bhatt proposed that MVC Architecture to convert

event in appropriate action, understand for the model for

changing the states, View gets the data forms itself by

rendering and notify state change. Use W3C Xfrom concept

use for automatically updating the views by updating the

forms work like as Struts Pull MVC. [15] Use the database

operation for the Hibernate like frameworks for the data

services.[15] Based on the development architecture

composed by the Struts and the Hibernate, it passes the data

by the value object which the layers corresponding to, and

strictly controls the visit to the persistence layer by the users.

In this way, it can protect the business data effectively. [15]

X. CONCLUSION

Based on the Literature survey, I am going to conclude that

there are different types of MVC architecture are hard to code,

not easy to single modification, also developer required more

time to finding out the root cause of applications when the

errors occurs. Developer do MVC code for the single form

design and write logics as code, so each individual form data

to follow same architecture with different code for the storing

the data entries due to the different entries. Also different code

for the mobile based service APIs. In simple manner, multiple

types of form data to follow individual web MVC and mobile

service APIs codes. So it’s sustain process. By the use our

proposed architecture I hope it will defiantly beneficial for the

each developers because of providing easy to use, less

complexity and complicated on coding part with lesser time

with efficient code structure. With this Generalized-MVC

architecture pre built provide the JSON and XML based API

services without any extra code of the applications. So,

providing the view rules for handling the web requests and

mobile services (action events) of controller. With this

controller to handle model’s state on web applications.

Through this architecture develop web and mobile services

(JSON & XML) applications very easily with lesser and

efficient code fragments.

REFERENCES

1. P. Clements and M. Shaw, “The Golden Age of

Software Architecture: Revisited,” IEEE Software,

vol. 26, no. 4, pp. 70–72, 2009.

2. Wu Wei, Lu Jian-de, Research of Layer Pattern on

Developing of J2EE Application, Microcomputer

Development, Vol.15, No.1, 2005.1, pp.125-127

3. "More deeply, the framework exists to separate the

representation of information from user

interaction." The DCI Architecture: A New Vision of

Object-Oriented Programming -Trygve

Reenskaug and James Coplien - March 20, 2009

4. Hot Frameworks - http://hotframeworks.com/

5. A. Bower and B. McGlashan, “Twisting the triad,”

Tutorial Paper for European Smalltalk User Group

(ESUP), 2000.

6. S. Burbeck, “Applications programming in smalltalk-

80 (tm): How to use model-view-controller (mvc),”

Smalltalk-80 v2. 5. ParcPlace, 1992.

7. Xiaohong Qiu, “Building Desktop Applications with

Web Services in a Message-based MVC Paradigm”,

Web Services, 2004. Proceedings. IEEE International

Conference on Page(s): 765 - 768

© December 2015 | IJIRT | Volume 2 Issue 7 | ISSN: 2349-6002

IJIRT 143217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 667

8. Hyun Jung La and Soo Dong Kim, “Balanced MVC

Architecture for Developing Service-based Mobile

Applications”, e-Business Engineering (ICEBE),

2010 IEEE 7th International Conference on Page(s):

292 – 299

9. https://en.wikipedia.org/wiki/Software_design_patter

n

10. Avraham Leff, James T. Rayfield “Web-Application

Development Using the ModelNiewlController

Design Pattern” IEEE on Page(s): 118 – 127

11. Yuehui Yu, Lei Ning, Weizhong Liu “Combining

HTML 5 with MVC Framework to Simplify Real-

Time Collaboration for Web Development” – IEEE

on Pages: 29-32

12. A Web Architectural Study of HTML5 with MVC

Framework – Jatin Chhikara – IJARCSSE Volume 3,

Issue 12, December 2013, ISSN : 2277 128X, Page

451 - 454

13. Diana M. Selfa, Maya Carrillo, Ma. del Rocío Boone

“A Database and Web Application Based on MVC

Architecture” Proceedings of the 16th IEEE

International Conference on Electronics,

Communications and Computers IEEE

14. LI Zhuo-ling, ZHU Shi-don, ZHANG Xin

“Implementation of a Five-tiers Architecture Based

on Struts and Hibernate for Web Applications” IEEE

15. Manish Bhatt “J2EE and MVC Architecture”

JGRCST – Volume 1, Issue 2 - July’ 2014

