
© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 114

CORPORATE EMPLOYEE SYSTEM

Sonali Samanta

B.tech: Information Technology, Dronacharya College of Engineering, Gurgaon , India

Abstract- The Corporate Employee is a Java application

that aims to provide a sync between the employees of a

company and the administration of that company. In

addition to that, this application also acts as an

employee management system. It makes the system

easy to monitor and manage employees from different

location. This system helps in supervising employees

work report and productivity. Employees are the

backbone of any company, their management pays a

major role in deciding the success of the organization.

Employee Management Software makes easy for the

employer to keep a track all the records.

Index Terms- corporate, employee, java, company,

administrator

I. INTRODUCTION

Employees are the backbone of any company, their

management pays a major role in deciding the

success of the organization. The application makes it

easy for the employer to keep a track all the records.

The Corporate Employee structure is used within a

company where administrator maintains the system

and manage all the operations like generating log in

number for employees, add or delete new vacancies,

etc. On the other hand, employees are the second

important part of this system. They apply for jobs,

promotion and apply if they fit into requirement; and

apply for leave as needed. This application works in

favor of employees. A company can maintain all the

records of employees like jobs, leave etc. Also,

administrator can update the status of leave of

employee.

II. SCOPE OF APPLICATION

The application has a very vast scope in future. It can

be implemented on the Internet in future. Project can

be updated in near future as and when requirement

for the same arises, as it is very flexible in terms of

expansion. With the proposed software of Web Space

Manager ready and fully functional, the client is now

able to manage and hence run the entire work in a

much better, accurate and error free manner. The

following are the future scope for the project: -

1. The number of levels that the software is

handling can be made unlimited in future

from the current status of handling up to N

levels as currently laid down by the

software. Efficiency can be further enhanced

and boosted up to a great extent by

normalizing and de-normalizing the

database tables used in the project as well as

taking the kind of the alternative set of data

structures and advanced calculation

algorithms available.

2. We can in future generalize the application

from its current customized status wherein

other vendors developing and working on

similar applications can utilize this software

and make changes to it according to their

business needs.

3. Faster processing of information as

compared to the current system with high

accuracy and reliability.

4. Automatic and error free report generation

as per the specified format with ease.

5. Automatic calculation and generation of

correct and precise Bills thus reducing much

of the workload on the accounting staff and

the errors arising due to manual calculations.

6. With a fully automated solution, lesser staff,

better space utilization and peaceful work

environment, the company is bound to

experience high turnover.

III. SYSTEM ANALYSIS

Software requirements analysis is a process of

discovery, refinement, modeling, and specification.

Requirement analysis proves the software designer

with a representation of information, function, and

behavior that can be translated to data, architectural

interface, and component -level designs. To perform

the job properly we need to follow as set of

underlying concepts and principles of analysis.

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 115

1. INFORMATION DOMAIN

All software applications can be collectively called

data processing. Software is built to process data, to

transform data from one form to another; that is, to

accept input, manipulate it in some way, and produce

output. This fundamental statement of objective is

true whether we build batch software for a payroll

system or real-time embedded software to control

fuel flow to an automobile engine.

The first operational analysis principle requires an

examination of the information domain and the

creation of a data model. The information domain

contains three different views of the data and control

as each is processed by a computer program:

(1) information contend and relationships

(the data model)

(2) information flow, and

(3) Information structure.

To fully understand the information domain, each of

these views should be considered.

2. MODELLING

(i) Functional models: Software transforms

information, and in order to accomplish this, it must

perform at least three generic functions:

 Input

 Processing

 And output

The functional model begins with a single context

level model (i.e., the name of the software to be

built). Over a series of iterations, more and more

functional detail is gathered, until a through

delineation of all system functionality is represented.

(ii) Behavioral models: Most software responds to

events from the outside world. This

stimulus/response characteristic forms the basis of

the behavioral model. A computer program always

exists in some state- an externally observable mode

of behavior (e.g., waiting, computing, printing, and

polling) that is changed only when some even occurs.

For example, in our case the project will remain in

the wait state until:

 We click OK command button when

first window appears

 An external event like mouse click

cause an interrupt and consequently

main window appears by asking the

username and password.

 This external system (providing

password and username) signals the

project to act in desired manner as per

need.

A behavioral model creates a representation of the

states of the software and the events that cause

software to change state.

3. FEASIBILITY STUDY

A feasibility analysis usually involves a thorough

assessment of the operational, financial and technical

aspects of a proposal. Feasibility study is the test of

the system proposal made to identify whether the

user needs may be satisfied using the current

software and hardware technologies, whether the

system will be cost effective from a business point of

view and whether it can be developed with the given

budgetary constraints. A feasibility study should be

relatively cheap and done at the earliest possible

time. Depending on the study, the decision is made

whether to go ahead with a more detailed analysis.

When a new project is proposed, it normally goes

through feasibility assessment. Feasibility study is

carried out to determine whether the proposed system

is possible to develop with available resources and

what should be the cost consideration. Facts

considered in the feasibility analysis were:

 Technical Feasibility

 Economic Feasibility

 Behavioral Feasibility

(i) Technical Feasibility: Technical Feasibility deals

with the hardware as well as software requirements.

Technology is not a constraint to type system

development. We have to find out whether the

necessary technology, the proposed equipments have

the capacity to hold the data, which is used in the

project, should be checked to carry out this technical

feasibility.

(ii) Economical Feasibility: This feasibility study

present tangible and intangible benefits from the

prefect by comparing the development and

operational cost. The technique of cost benefit

analysis is often used as a basis for assessing

economic feasibility. This system needs some more

initial investment than the existing system, but it can

be justifiable that it will improve quality of service.

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 116

Thus feasibility study should center along the

following points:

 Improvement resulting over the

existing method in terms of

accuracy, timeliness.

 Cost comparison

 Estimate on the life expectancy of

the hardware

 Overall objective

Our project is economically feasible. It does not

require much cost to be involved in the overall

process. The overall objectives are in easing out the

requirement processes.

(iii) Behavioral/ Operational Feasibility: This

analysis involves how it will work when it is installed

and the assessment of political and managerial

environment in which it is implemented. People are

inherently resistant to change and computers have

been known to facilitate change. The new proposed

system is very much useful to the useful to the users

and there for it will accept broad audience from

around the world.

IV. OPERATING ENVIRONMENT

Hardware Specification:

(1) Server Side:

 Core 2 Due 2.4GHz and Above

 2 GB of Random Access Memory and

Above

 GB 160 Hard Disk

(2) Client Side:

 Pentium-IV 1.5MHs and Above

 512 MB of Random Access Memory and

Above

 80 GB Hard Disk

Software Specification:

 Environment: Netbeans 8.1

 Technologies: JSP,CSS,HTML

 Database: MY SQL 5.5

 Software: Netbeans 8.1, Notepad ++

 OS: Windows 10, Windows 8, Windows 7

 Browser: IE7, IE8, FF 3.5, GOOGLE

CHROME

V. SYSTEM DESIGN

1. USE CASE DIAGRAM

Use case diagrams are used to gather the

requirements of a system including internal and

external influences. These requirements are mostly

design requirements. So when a system is analyzed to

gather its functionalities use cases are prepared and

actors are identified. Use case diagrams are

considered for high level requirement analysis of a

system. So when the requirements of a system are

analyzed the functionalities are captured in use cases.

So we can say that uses cases are nothing but the

system functionalities written in an organized

manner. Now the second things which are relevant to

the use cases are the actors. Actors can be defined as

something that interacts with the system. The actors

can be human user, some internal applications or may

be some external applications. So in a brief when we

are planning to draw a use case diagram we should

have the following items identified.

 Functionalities to be represented as an use

case

 Actors

 Relationships among the use cases and

actors.

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 117

Fig: Case Diagram for Corporate

Employee

2. STATE DIAGRAM

A state diagram, also called a state machine diagram

or state chart diagram, is an illustration of the states

an object can attain as well as the transitions between

those states in the Unified Modeling Language

(UML). In this context, a state defines a stage in the

evolution or behavior of an object, which is a specific

entity in a program or the unit of code representing

that entity. State diagrams are useful in all forms of

object-oriented programming (OOP). The concept is

more than a decade old but has been refined as OOP

modeling paradigms have evolved

A state diagram resembles a flowchart in which the

initial state is represented by a large black dot and

subsequent states are portrayed as boxes with

rounded corners. There may be one or two horizontal

lines through a box, dividing it into stacked sections.

In that case, the upper section contains the name of

the state, the middle section (if any) contains the state

variables and the lower section contains the actions

performed in that state. If there are no horizontal

lines through a box, only the name of the state is

written inside it. External straight lines, each with an

arrow at one end, connect various pairs of boxes.

These lines define the transitions between states. The

final state is portrayed as a large black dot with a

circle around it. Historical states are denoted as

circles with the letter H inside.

Fig: State Diagram for Administrator

Fig: State Diagram for User

3. DATA FLOW DIAGRAM (DFD)

A data flow diagram (DFD) illustrates how data is

processed by a system in terms of inputs and outputs.

As its name indicates its focus is on the flow of

information, where data comes from, where it goes

and how it gets stored.

DFD contains a shape that represents the system to

model. It also shows the participants who will

interact with the system, called the external entities.

In this example, Company, New Individual,

Registered Individual and Admin are the entities who

will interact with the system. In between the process

and the external entities, there are data flow

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 118

(connectors) that indicate the existence of

information exchange between the entities and the

system.

Fig: Zero Level DFD

Fig: First Level DFD

Fig: ER Diagram

VI. TESTING

1. SYSTEM TESTING

Once source code has been generated, software must

be tested to uncover (and correct) as many errors as

possible before delivery to customer. Our goal is to

design a series of test cases that have a high

likelihood of finding errors. To uncover the errors

software techniques are used. These techniques

provide systematic guidance for designing test that

 (1) Exercise the internal logic of software

components, and

 (2) Exercise the input and output domains

of the program to uncover errors in program

function, behavior and performance.

Software is tested from two different perspectives:

(1) Internal program logic is exercised

using “White box” test case design

techniques.

(2) Software requirements are exercised

using “black box” test case design

techniques.

In both cases, the intent is to find the maximum

number of errors with the minimum amount of effort

and time.

2. STRATEGIES

A strategy for software testing must accommodate

low-level tests that are necessary to verify that a

small source code segment has been correctly

implemented as well as high-level tests that validate

major system functions against customer

requirements. A strategy must provide guidance for

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 119

the practitioner and a set of milestones for the

manager. Because the steps of the test strategy occur

at a time when deadline pressure begins to rise,

progress must be measurable and problems must

surface as early as possible.

Following testing techniques are well known and the

same strategy is adopted during this project testing.

2.1 Unit testing: Unit testing focuses verification

effort on the smallest unit of software design- the

software component or module. The unit test is

white-box oriented. The module interface is tested to

ensure that information properly flows into and of the

program unit under test the local data structure has

been examined to ensure that data stored temporarily

maintains its integrity during all steps in an

algorithm’s execution. Boundary conditions are

tested to ensure that the module operated properly at

boundaries established to limit or restrict processing.

All independent paths through the control structure

are exercised to ensure that all statements in a module

haven executed at least once.

2.2 Integration testing: Integration testing is a

systematic technique for constructing the program

structure while at the same time conducting tests to

uncover errors associated with interfacing. The

objective of this test is to take unit tested components

and build a program structure that has been dictated

by design.

2.3 Validation testing: At the culmination of

integration testing, software is completely assembled

as a package, interfacing errors have been uncovered

and corrected, and a final series of software tests—

validation testing-may begin. Validation can be

defined in many ways, but a simple definition is that

validation succeeds when software functions in a

manner that can be reasonably expected by the

customer.

2.4 System testing: System testing is actually a

series of different tests whose primary purpose is to

fully exercise the computer-based system. Below we

have described the two types of testing which have

been taken for this project.

2.4.1 Security testing

Any computer-based system that manages sensitive

information causes actions that can improperly harm

(or benefit) individuals is a target for improper or

illegal penetration. Penetration spans a broad range of

activities: hackers who attempt to penetrate system

for sport; disgruntled employees who attempt to

penetrate for revenge; dishonest individuals who

attempt to penetrate for illicit personal gain. For

security purposes, when anyone who is not

authorized user cannot penetrate this system. When

programs first load it check for correct username and

password. If any fails to act according will be simply

ignored by the system.

2.4.2. Performance Testing

Performance testing is designed to test the run-time

performance of software within the context of an

integrated system. Performance testing occurs

throughout all steps in the testing process. Even at the

unit level, the performance of an individual module

may be assessed as white-box tests are conducted.

2.5 Validation Checks

Software testing is one element of broader topic that

is often referred to as verification and validation.

Verification refers to the set of activities that ensure

that software correctly implements a specific

function. Validation refers to a different set of

activities that ensure that the software that has been

built is traceable to customer requirements. Boehm

state this another way:

 Verification: “Are we building the

product right?”

 Validation: “Are we building the right

product?”

Validation checks are useful when we specify the

nature of data input. Let us elaborate what I mean. In

this project while entering the data to many text box

you will find the use of validation checks. When you

try to input wrong data. Your entry will be

automatically abandoned.

In the very beginning of the project when user wishes

to enter into the project, he has to supply the

password. This password is validated to certain

string, till user won’t supply correct word of string

for password he cannot succeed. When you try to edit

the record for the trainee in Operation division you

will find the validation checks. If you supply the

number (digits) for name text box, you won’t get the

entry; similarly if you data for trainee code in text

(string) format it will be simply abandoned.

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143730 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 120

A validation check facilitates us to work in a greater

way. It become necessary for certain applications like

this.

VII. CONCLUSION

The aim of this project is to help the employees or

the people who are connected to a company directly

or indirectly. This is web based project so it can

modify in future if needed. In this report all the needs

of a corporate employee are considered which means

any employee can use this by logging with his c code

which is equals to user id and password and complete

his profile after getting the permission of admin.

REFERENCES

1. www.google.co.in

2. www.youtube.com

3. http://wikipedia.org/

4. www.webopedia.com

5. www.mysql.com

6. www.javatutorial.com

7. www.sun.com

8. http://www.java2s.com

9. www.w3schools.com

10. Material provided by the HCL-CDC

11. Herbert Scheldt – Java 2: The Complete

Reference, Fifth Edition. This book covers

all aspect of java programming language.

12. Head First Java-Second Edition Authors:

Bert Bates, Kathy Sierra

