
© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 114

Design of a Routing Protocol for Enhancing Underwater

Transmission

Mohini Yadav

Dronacharya College of Engineering

Abstract— The myriad barriers to underwater

communication provide a new set of challenges for

network protocols. Routing protocols which operate in

underwater ad hoc networks must react quickly to

changing conditions without significant increase in

packet overhead or congestion. Dynamic Source

Routing Protocol provides a framework for

accomplishing these goals. In this paper we present the

Acoustic Routing Protocol, which implements this

framework and enhances upon it. It uses a limited

propagating route request which we call a Route

Recovery to quickly and inexpensively recover from

routing errors. A C++ based network simulator was

constructed in order to test and compare the protocols.

Statistics were calculated based on packets delivered,

total transmissions, and time to recover from a route

error as measurements of protocol effectiveness.

I. INTRODUCATON

In most computer systems, communication takes

place between stationary nodes with propagation

delays of only a few microseconds. New technologies

have been made available that allow for high

bandwidth pipes even in consumer networks. The

protocols that have been designed for these networks

take advantage of the speed of communication to

make it reliable and robust as well. However, these

technologies become useless if they are placed in

another medium, specifically water. The problem at

hand is finding an acceptable communication

technology and a set of protocols to facilitate the

communication of Autonomous Undersea Vehicles

(AUV). We have considered the attributes of both the

medium and the network we intend to create in it.

II. OBJECTIVE

We decided on two goals for our protocol (ARP):-

The first is to decrease the time taken to recover

from an error.

The second is to maintain a comparable end-to-end

packet delivery ratio and total transmissions used to

deliver packets and for routing overhead. These goals

are to be accomplished under varying degrees of

network stability which are introduced by a

combination of the mobility of the network and the

effective range of acoustic communication. We have

researched protocols used for land-based mobile ad

hoc networks and considered the inefficiencies

inherent in each.The protocol we have chosen to base

our work on is Dynamic Source Routing (DSR).

Preliminary research into prior work has suggested

this protocol would be most conducive to our first

goal. The Acoustic Routing Protocol (ARP) has been

designed with the specific intent of reducing time to

adapt to error and maintaining acceptable levels of

quality of service in terms of end-to-end delivery

ratio and total number of packet transmissions used

for inter-node communication. The rest of the

document is organized as follows.

III. EXISTING SYSTEM

In this article , we describes the simulator program

which was written for this paper. The use of object

oriented methodologies is discussed and the ways in

which they improve the extensibility and ease of use

of the program are demonstrated. An emphasis is

placed on the principles of polymorphism and

inheritance. The program is shown to use Model

View Controller architecture. Event based processing

is shown to be used through a simple Queuing

architecture. The program is configurable using the

XML configuration files to analyze the various

topologies and communication parameters. Design

decisions are explained with regards to the

implementation of the OSI model for network

communication.

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 115

Random Waypoint Simulator: we created network

simulator program in the C++ programming

language. This program is configurable using XML

configuration file for parameters for simulator

network and the topology for the AUVs. This allows

us to modify parameters and the protocol to be used

at runtime and get results for various topologies and

the routing protocol of choice.

The second key component utilized in the simulator

program is inheritance. While this is one of the most

basic C++ principles, it is critical for the simplicity of

the program. We use a shared abstract super class to

define all protocols. This class defines how each

implementation of a protocol should function, and

following this implementation ensures that the

protocol will fit into the simulator code without

modification to the main simulator program. Any

protocol implementation must have a send method

and a receive method. The simulator stores each

protocol and calls its send or receives method based

on events that occur in other protocols or in the

simulator's initializing method. The simulator code

has references to the specific protocols used for the

simulation. All protocols are stored as the abstract

Protocol object, or as in the case of the routing

protocol, a more specialized abstract extension of the

Protocol class is used to tailor a set of protocols to a

specific layer and allow for more layer specific

functionality.

The program uses a Model-View-Controller

architecture which focuses primarily on the controller

portion. The view is simplified to a series of logging

statements and a print of statistical data at the

program's completion performed within each

protocol. The model is maintained in memory and

consists of a set of protocols, a set of agents which

represent the topology, and packet objects which are

generated by the simulator and by each protocol.

Fig.3.1 Simulator Class Diagram

Simulator Code Organization

// Logging for simulator

#pragma once

#include <iostream>

#include <iomanip>

#include <list>

#include "typedefs.h"

#include "Vector.h"

// Log the generic send and receive events when fired

void LogEvent(ID packetID, std::string mode,

std::string protocol, ID agentID, Time eventTime);

// Log when the next agent on the route is outside the

transmission range

void LogInRangeError(ID source, ID destination,

double distance, double transmissionRange);

// Log when a packet is received at the destination

agent's application layer

void LogPacketReceived(ID packetID, ID source, ID

destination, std::list<ID> route);

// Log when a route requested has been received at

the destination node

void LogRouteRequestReached(ID packetID, ID

source, ID destination, std::list<ID> route);

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 116

// Log when a route request is broadcasted by a agent

on the route

void LogBroadcast(ID packetID, int TTL, ID

currentAgent, ID source, ID destination, std::list<ID>

agentsInRange);

// Log when a route reply reaches the source and the

route to destination is added to the routing table

void LogRouteAdded(ID packetID, ID currentAgent,

ID destination, std::list<ID> routeToDestination);

// Log the node agent mobility events

void LogMobilityEvents(ID agentID, std::string

mode, Time eventTime,

 Utilities::Vector from = Utilities::Vector(0,

0), Utilities::Vector to = Utilities::Vector(0, 0));

// Print the std::list<ID> as suited to the requirements

std::ostream& operator<<(std::ostream& stream,

std::list<ID> list);

Event-queue architecture:An example of the ways

in which events are handled in the queue is outlined

in Figure 3.2 In the example, two traffic events,

labeled Traffic 1 and Traffic 2, are generated with

times 0 and 20 respectively. Traffic event 1 is

evaluated first and results in the creation of send

event labeled Send 1A and assigned time 0. Since

that event preempts the second traffic event, it is

executed first and two receive events are generated

based on it. The first is labeled Receive 1A and given

time of 10 and the second is labeled 1B and assigned

a time of 30. The difference is assumed to be based

on a difference in propagation delay between the

nodes the events represent.Therefore, it is shown in

the diagram that Receive 1A will evaluate before

Traffic 2, and Receive 1B will evaluate afterwards.

When Receive 1A is processed, it generates another

send event called Send 1B. Since we assume that the

time to process and transmit is negligible in this case,

the time assigned to the send event is 10 also.

The sequence will continue like this until all events

have been processed. In this case we consider only

generic send and receive event types, rather than the

link layer and route layer send and receive events

separately, in order to simplify the diagram. Related

send and receive events occurring within the same

node will always occur in the order of the layers

processing due to the natural order of insert provided

by the queue for events with equivalent time values.

Each event remains in memory until processed and

removed from the queue, at which point it becomes

eligible for garbage collection and will be deleted.

The absence of database persistence facilitates

quicker processing through reduced I/O time.

However, this also results in significant memory

usage for each simulation. Simulations for this

research used between 1 and 2 gigabytes of memory

on average.

The controller handles all interaction between the

protocols. Each event contains a type identifier which

corresponds to a specific protocol layer and direction

of transmission. The controller uses this field to

determine what protocol to use and which method to

call.

Each protocol must generate the requisite events for

the next layer in the stack. For example, the protocol

must generate an application layer receive event

when a packet arrives at its destination and data link

send events each time it needs to forward a packet.

For the purposes of this project, we have simplified

the protocol stack to combine data and link layers and

eliminated the transport layer, assuming it to use the

simple Universal Datagram Protocol. These protocols

could be easily implemented by adding references

and corresponding events to the controller and

modifying the existing protocols to create the

appropriate events.

Each protocol implementation should also be

complemented by a header class. To avoid

interoperability issues, a protocol should only use

information from its corresponding header.

Upon initialization the simulator generates all the

packets automatically for the specified total

transmission time at the specified time interval, as

well as the corresponding application layer send

event, for each traffic agent and the events for initial

movement of the node agents are also generated. The

application layer protocol then executes the first

event, generates the route layer send event for that

packet, and creates the application layer send event

for the subsequent packet. In our experiments we use

a Constant Bit Rate application protocol, such that

the next application send event is set to the current

time with an added configurable delay. The event

queue's sorted insert ensures that these and all

subsequent events are processed in the correct order.

The simulator program runs on a loop to easily

average the results of multiple experiments for each

chosen configuration. It generates a new topology

and traffic model for each iteration. Averages and

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 117

standard deviations of each statistic item are output

after all iterations have completed.

Fig-3.2 Event queue architecture example

IV. PROPOSED SYSTEM

In this article, we describe the proposed protocol,

which adapts the principles of DSR for use in the

underwater environment. The Acoustic Routing

Protocol (ARP) utilizes a new mechanism called

Route Recovery, which provides a fast and

inexpensive method to recover from routing errors

due to topology change or intermittent failure.

DSR is a simple protocol which lays the groundwork

for the desired application, but it was designed for

low latency electromagnetic networks and must

therefore be modified to facilitate the high latency of

underwater communication. Flooding employed by

Route Discovery and Route Maintenance is a major

concern in an environment with a high cost per

packet in transmission time.

The proposed Acoustic Routing Protocol (ARP)

improves upon DSR's Route Maintenance with the

goal being quicker recovery from errors as well as

fewer total transmissions. The mechanism which we

have developed for this purpose is called Route

Recovery. It replaces the use of full Route Discovery

in Route Maintenance and allows for more localized

repair of broken routes.

The Route Recovery mechanism functions as

follows:-

Instead of propagating Route Errors back to the

source and allowing rediscovery to occur there, the

node creating the error attempts a single Route

Request with a time to live (TTL) set based on the

number of remaining nodes on the original source

route. The theory behind initiating the route repair

from the source of the error as opposed to the source

of the original route is based on the fact that in a

wireless network the connectivity of the nodes is

dependent on physical locality. The next shortest path

to the destination is likely to pass through or near the

error source since it is likely to be in between the

source and destination.

The other reason to start the recovery at the error

source is that the transmissions used to return back to

the original traffic source are costly in the underwater

environment. A TTL field in the route header is used

to limit the propagation of the recovery transmission

to the local area around the error source. A TTL is an

integer valued field set in the packet's header which is

initialized to a predetermined value and then

decremented at every hop which forwards the packet.

Once the TTL reaches zero, the node receiving the

packet ceases forwarding it and drops the packet.

TTLs are used in many networks to prevent an

example unbounded exponential propagation of every

packet. In this case, since packet transmission

underwater is expensive, we use TTL to decrease the

overhead associated with Route Discovery.

However, a full Route Discovery is still used in the

case where local Route Recovery is not economical

due to an error occurring at great distance from the

destination.

It is also used to initialize a node's view of the

network prior to transmitting data packets of a Route

Recovery are shown in Figure 4.1. This contrast

sharply to using DSR's response to errors using Route

Maintenance, As in the prior example, in the first

image node A has a route to node F through nodes B

and C and using this route to send data packets.

When node C moves out of communication range of

node B, the route is broken and the packet is lost.

However, unlike in the example from the previous

chapter, instead of sending a Route Error packet to

node A, node B originates a Route Recovery marking

A as the original source and F as the destination.

Nodes D and E receive this transmission in turn and

forward it on until it reaches the destination at node

F. Once F receives the Route Recovery, it sends the

Route Response along the accumulated source route,

which includes the truncated original source route

from A to B and all nodes which the recovery passed

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 118

through to reach its destination. At this point node A

can resume data packet transmissions to F using this

new source route.

The protocol is configured with a constant minimum

TTL to ensure that the request propagates even if

very few nodes are left. A constant maximum TTL,

above which a Route Recovery is not initiated, is also

used to ensure the recovery's scope is not too broad.

A recovery bit is set in the error header to notify the

source that a recovery was attempted. The source

node will then delay its rediscovery attempt by some

time large enough to allow the recovery to propagate

back first, if successful.

If a recovery was not initiated, the node will simply

use a full Route Discovery. If the recovery is

successful, the destination node will initiate a Route

Reply back to the original source. The source should

receive this reply prior to attempting the rediscovery

and, having reached the lost route, abort the

rediscovery and simply transmit a packet along the

new route. The intent of this modification is to

facilitate quick recoveries in instances where the

destination is close by, but allow the source to use

Route Discovery to rebuild the topology view with

Route Discovery should this fail, or should the failure

happen far from the destination.

As shown in Figure 4.2, ARP's Route Recovery

mechanism is designed to reduce flooding due to

error recovery. In the first image of the diagram, a

packet is shown traveling from the source to the

destination along the thicker arrows and being

between the third hop and the destination. The Route

Error transmission is sent back to the source and a

Route Discovery is initiated, which floods the entire

network with packets attempting to reform a route to

the destination. A new route to the destination is

found, but at a high cost in both time and packet

transmissions.

In the second image of the diagram, the same error

condition occurs, but a Route Recovery with TTL of

2 hops is used in place of the Route Error and full

Route Discovery. The Route Error is appended to the

Route Recovery to ensure that the source ceases to

use the broken route to deliver data packets. The

Route Recovery travels to the destination, but is

prevented from flooding the entire network with the

use of the TTL.

It should also be noted that the recovery reaches the

destination a full two round trip times earlier in this

case due to the Route Recovery being initiated at the

error source rather than the original source.

Fig. 4.1 an example of route repair

In the above example, one hop was remaining on the

original source route and two hops were required to

route around the broken link.

As shown in Figure 4.2, when a network is assumed

to be well connected, the required TTL for a Route

Recovery to reach the destination is likely to be one

more than the number of hops remaining in the

original route. Higher TTL values would be required

for loosely connected networks in which few

alternate paths exist and each recovery must travel far

from the original path to reach its destination. For the

experiments in this research, we limit the recoveries

to a small TTL with a factor of 1.5 times the number

of hops remaining on the original source route, with a

minimum of 2 hops to handle the least case and a

maximum of 12 hops to further restrict the scope of

the recoveries. This we do under the assumption that

localized repair is most valuable under minimal

scope.

In cases in which the calculated TTL would cause the

message to propagate to a large portion of the

network, we prefer a full discovery to obtain a

complete refresh of the topology information.

There are a number of possible measures for success

of any routing protocol. From among those we have

chosen the three which we feel are most important

given the underwater environment. One measure is

the total number of transmissions used for packet

delivery, including both data packets and packets

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 119

used for routing mechanisms. In some networks it is

desirable to use the routing overhead alone as a data

point. However, due to the high cost of each packet

transmission in the underwater environment, we

choose to use the total packet cost instead of this

measure. Another possible measure is the end-to-end

delivery time. This would measure the difference

between the time the packet is transmitted and the

time the packet is received at the destination. We

reject this measure as well, since the time taken to

deliver each packet for which no error occurs would

have a strong influence on this number and is

unrelated to the capabilities of the of the routing

protocol. The distance between source and

destination, which is likely to vary randomly due to

the random nature of topologies used, could also have

an impact on this measure.

Fig. 4.2 comparison between route discovery and route

recovery responses to error

We are more interested in the period of time taken by

the network to recover from an error. Therefore we

measure the recovery time, which is calculated as the

difference between the time an error occurs and the

time the next packet for that traffic source is received

at the destination. This allows us to represent the

responsiveness of the protocol to error conditions

without respect to the above mentioned variables. A

common measure of network performance is

throughput. It is the number of successful message

deliveries per unit of time. Throughput is often

measured in bits per second, but given fixed packet

length can be simplified to packets per second.

For these experiments, we choose to separate from

the time variable and simply consider the percentage

of packets delivered over the course of the

simulation. This is to show more accurately the

reliability of the protocol independently of the speed

of delivery. It also prevents the distance between

source and destination from having a measurable

effect on the statistic. With these measures, we will

show ARP to be an efficient and robust protocol.

V. CONCLUSION

The original purpose of this study was to create a

routing protocol which could meet the

communication needs of an ad hoc network of

autonomous undersea vehicles.

These vehicles by definition operate in an

environment which provides numerous obstacles to

communication. Therefore the routing protocol

designed for use with these vehicles has to be

reactive and adaptable to frequent topology changes.

Dynamic Source Routing is the most suitable

starting point for such a study, as it is designed in a

simple manner to avoid the unnecessary overhead

which is associated with many other RF wireless

routing protocols. We have designed the Acoustic

Routing Protocol which uses DSR as a framework

and adds the Route Recovery mechanism to

facilitate quicker and less expensive responses to

errors.

We created a C++ based network simulator which

implements each of these protocols and provides a

medium in which to test these and other protocols

using variable topology and traffic settings. The

simulator makes use of object oriented methodology

and the Spring framework to allow for easy runtime

adjustment of settings and replacement of protocols.

We ran numerous tests and compiled data from the

results using statistical analysis tools which are built

into the simulator architecture.

Additionally, a random waypoint mobility model

and an underwater physical layer with random

packet lost were implemented in order to test the

protocols under error prone conditions.

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143809 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 120

We judge the capability of each protocol based on

time to recover from an error, number of packets

used in communication and percent of data packet

which reached their destination. Each protocol is

tested with varying degrees of inter-connectivity,

based on wireless communication range, and

topology volatility, which is determined by pause

time between mobile node movements. The data

shows that ARP reacts more quickly to routing

errors than DSR, particularly given a highly volatile

topology. Because of the high latency of the

underwater environment, and the independent nature

of the AUVs, gaps in network availability are

extremely costly. While a small percentage of

reduced reliability and increased total packet

transmissions was required to reach this goal, the

drawbacks are outweighed by the benefits,

particularly in rapidly changing topologies.

REFERENCES

[1] R. Bai and M. Singhal. DOA: DSR over AODV

routing for mobile ad hoc networks. IEEE

Transactions on Mobile Computing,

5:1403{1416, Oct 2006.

[2] L. M. Brekhovskikh and Y. P. Lysanov.

Fundamentals of Ocean Acoustics. Springer, 3rd

edition, Aug 2005.

[3] T. Camp, J. Boleng, and V. Davies. A survey of

mobility models for ad hoc network research.

Wireless Communication and Mobile

Computing: Special Issue on Mobile Ad Hoc

Networking Research Trends and Applications,

2(5):483{502,2002.

[4] R. Castaneda, S. R. Das, and M. K. Marina.

Query localization techniques for on-demand

routing protocols in ad hoc networks. Wireless

Networks, 8:137{151,2002.

[5] D. M. Crimmins, C. T. Patty, M. A. Beliard, J.

Baker, J. C. Jalbert, R. J. Komerska, S. G.

Chappell, and D. R. Blidberg. Long-endurance

test results of the solar-powered AUV system. In

MTS/IEEE Oceans 2006, Boston, MA,

Sept.2006.

[6] J. C. Jalbert. Multiple AUV communications test

report - Lake George, NY; October 17 - 22,

2004. Technical Report 0411-01, Autonomous

Undersea Systems Institute, Nov. 2004.

[7] J. C. Jalbert, J. Baker, J. Duchesney, P. Pietryka,

W. Dalton, D. R. Blidberg, S. G. Chappell, R.

Nitzel, and K. Holappa. Solar-powered

autonomous underwater vehicle development. In

Thirteenth International Symposium on

Unmanned Untethered Submersible Technology

(UUST'03), Durham, NH, Aug. 2003.

[8] D. B. Johnson, D. A. Maltz, and J. Broch. DSR:

The dynamic source routing protocol for multi-

hop ad hoc networks. Ad Hoc Networking, pages

139{172, 2001.

[9] D. B. Johnson, D. A. Maltz, and Y.-C. Hua. The

dynamic source routing protocol for mobile ad

hoc networks (DSR). RFC 4728 (Standard),

2007.

[10] D. E. Lucani, M. M_edard, and M. Stojanovic.

Underwater acoustic networks: Channel models

and network coding based lower bound to

transmission power for multicast. IEEE Journal

on Selected Areas in Communications,

26:1708{1719, Dec 2008.

