
© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143813 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 127

Search Engines for the World Wide Web:

An Evaluation Methodology and their Optimization

Jagrati Jain

Student, Dronacharya College Of Engineering, Gurgaon

Abstract— For hundreds of years the mankind has

organized information in order to make it more

accessible to the others. The last media born to globally

provide information is the Internet. With the Web, in

particular, the name of the Internet has spread all over

the World. Due to its impressive size and its high

dynamicity, when we need to search for information on

the Web, usually we begin by querying a Web Search

Engine. A Web Search Engine maintains and catalogs

the content of Web pages in order to make them easier

to find and browse. Even though the various Search

Engines are similar, each one of them differentiates

from the other by the methods for scouring, storing,

and retrieving information from the Web. Usually

Search Engines search through Web pages for specified

keywords. In response they return a list containing

those documents containing the specified keywords.

This list is sorted by relevance criteria which try to put

at the very first positions the documents that best match

the user’s query. The usefulness of a search engine to

most people, in fact, is based on the relevance of results

it gives back. This paper tries to explain the functioning

of web search engines, their internal structure and

develop a search enginewhich ranks the document

according to the searched keyword

Index Terms— Search Engine,search engine for the

web, search engine methodology, search engine

optimization.

I. INTRODUCTION

In 2008, Google reported that they had discovered

over 1 trillion unique URLs on the Web. And as

previous research has shown, it is unlikely that

Google, or any other search engine, is even close to

discovering all the available content on the Web. The

Web is certainly a large place, and finding

information can be a daunting task without a web

search engine. In this article, we will examine how

search engines work by examining the collection

process, indexing of the content, and the factors that

play in ranking the content.

Web Crawling

Web crawler download a web page, examine it for

links to other pages, and continue downloading links

it discovered until there were no more links left to be

discovered.Figure 1.1 below shows how a web

crawlerpulls from the Web and places downloaded

web resources into a local repository. The next

section will examine how this repository of web

resources is then indexed and retrieved when you

enter a query into a search engine.

Figure 1.1: The Web is crawled and placed into a local

repository where it is indexed and retrieved when using

a search engine.

Indexing and Ranking

When a web crawler has downloaded a web page, the

search engine will index its content. Often the stop

words, words thatoccur very frequently like a, and,

the, and to, are ignored. Other words might

bestemmed. Stemming is a technique that removes

suffixes from a word to improve the content of the

index. For example, eating, eats, and eaten may all be

stemmed to eat so that a search for eat will match all

its variants.

An example index (usually called an inverted index)

will look something like this where the number

corresponds to a web page that contains the text:

cat > 2, 5

dog > 1, 5, 6

fish > 1, 2

bird > 4

So a query for dog would result in pages 1, 5, and 6.

A query for cat dog would only result in page 5 since

it is the only page that contains both search terms.

Some search engines provide advanced search

http://knol.google.com/k/-/-/3mudqpof935ww/ip4n5y/searchengineoverview.png

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143813 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 128

capabilities, so a search for cat OR dog and NOT

fish would be entered which would result in pages 1,

5, and 6.

The search engine also maintains multiple weights

for each term. The weight mightcorrespond to any

number of factors that determines how relevant the

term is to its host web page. Term frequency is one

such weight which measures how often a term

appears ina web page. Another weight that is given to

a web page is based on the context in which the term

appears in the page. If the term appears in a large,

bold font or in the title of the page, it may be given

more weight than to a term that appears in a regular

font. A page might also be given more weight if links

pointing to the page use the term in its anchor text. A

final weight which most search engines will use is

based on the web graph, the graph which is created

when viewing web pages as nodes and links as

directed edges. Good pages receive many citations,

and bad pages receive few. So pages that have in-

links from many other pages are probably more

important and should rank higher than pages that few

people link to. Brin and Page named their ranking

algorithm PageRank, and it was instrumental in

popularizing their new search engine called Google.

All search engines today take into account the web

graph when ranking results.

Figure 1.2 shows an example of a web graph where

web pages are nodes and links from one page to

another are directed edges. The size and color of the

nodes indicate how much PageRank the web pages

have. Note that pages with high PageRank (red

nodes) generally have significantly more in-links

than do pages with low PageRank (green nodes).

Figure 1.2: Example web graph. Pages with higher

PageRank are represented with larger nodes.

Ranking Optimization

Search engines guard their weighting formulas as a

trade secret since it differentiates their service from

other search engines, and they do not want content-

producers (the public who produces web pages) to

“unfairly” manipulate their rankings.However, many

companies rely heavily on search engines for

recommendations and customers, and their ranking

on a search engine results page (SERP) is very

important. An industry based on search engine

optimization (SEO) thrives on improving their

customer’s rankings by designing their pages to

maximize the various weights discussed above and to

increase the number and quality of incoming links.

Caching Search Engine Query Results

WSE caching, similarly to Web page caching, can

occur at several places, e.g. on the client side, on a

proxy, or on the server side. Caching on either the

client or the proxy has the advantage of saving

network bandwidth. Caching on the server side, on

the other hand, has the advantage of improving the

shareness of query results among different users.

Moreover, caching at this level has the effect of

saving I/O and computational resources used by the

WSE to compute the page of relevant results to be

returned to a user. In fact, consider that, in order to

prepare a page of results, we have to intersect

inverted lists that can be distributed, and to globally

rank the results to decide which are the most relevant

ones. On the other hand, cache results are cheaper to

retrieve since it, usually, involves just a look-up

operation on a search data structure.

 One of the issues related to server-side

cache is the limited resources usually available on the

WSE server, in particular the RAM memory used to

store the cache entries. However, the architecture of a

scalable, large-scale WSE is very complex and

includes several machines which take care of the

various sub-tasks involved in the processing of user

queries. Figure 1.3 shows the typical architecture of a

modern large-scale WSE placed behind an http

server. We can see a distributed architecture

composed by a farm of identical machines running

multiple WSE CORE modules, each of which is

responsible for searching the index relative to one

specific sub-collection of documents. This

organization of the index is called Local Inverted File

or Document Partitioning, in contrast to a Global

Inverted File of Term Partitioning in which a

complete index is horizontally split so that different

http://knol.google.com/k/-/-/3mudqpof935ww/ip4n5y/web-graph.png

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143813 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 129

index partitions refer to a subset of the set of distinct

terms of the collection. In front of these searcher

machines we have an additional machine hosting the

MEDIATOR/BROKER. This module has the task of

scheduling the queries to the various searchers, and

of collecting the results returned back. The mediator

then orders these results on the basis of their

relevance, and produces a ranked vector of document

identifiers (DocIDs), e.g. a vector composed by 10

DocIDs. These DocIDs are then used to get from the

URLS/SNIPPETS SERVER the associated URLs and

page snippets to include in the html page returned to

the user through the http server.

Figure 1.3: Architecture of a large-scale, distributed

WSE hosting a query results cache.

Here we are interested in studying the design and

implementation of such a server-side cache of query

results. In particular, we will analyze the performance

of a one-level cache in terms of hit-ratio and

throughput. Starting from an accurate analysis of the

content of three real query logs, we propose a novel

replacement policy (called SDC- Static and Dynamic

Cache) to adopt in the design of a fully associative

cache of query results. According to SDC, the results

of the most frequently accessed queries are

maintained in a fixed size set of statically locked

cache entries. This set is called Static Set an it is

rebuilt at fixed time intervals using the statistical data

coming from the WSE usage data. When a query

arrives at SDC if it cannot be satisfied by the Static

Set the it competes for the use of a Dynamic Set of

cache entries.

 We experimentally demonstrated the

superiority of SDC over other caching policies

proposed elsewhere, by evaluating both the hit-ratio

and the throughput achieved on the three query logs

by varying the size of the cache, the percentage of

cache entries of the Static Set, and the replacement

policy used for managing the Dynamic Set.

Moreover, we showed that WSE query logs exhibit

not only temporal locality, but also a limited spatial

locality, due to requests for subsequent pages of

results. Furthermore, our caching system exploits a

sort of Speculative Prefetching Strategy that,

differently from other prefetching proposals, tries to

maintain a low overhead on the underlying WSE

Core. In fact, while server-side caching surely

reduces the load over the core query service of a

WSE and improves its throughput, prefetching aims

to increase the cache hit-ratio and thus the

responsiveness (from the point of view of each single

user) of the WSE, but may involve a large overhead

on the same core query service. So an accurate study

of tradeoffs of prefetching is necessary, and we

addressed this in the experimental section of the

chapter by analyzing pros and cons of different

prefetching strategies.

 In this work we will propose, in fact, SDC a

novel caching policy which at the same cost of the

LRU (or SLRU) policy (or even lower) will obtain

hit-ratios that, in many cases, are better than those of

PDC. In particular, we will see that, in principle,

SDC can be combined with any other existing

policies. In fact, with all the policies we considered in

our experiments, SDC has always brought to

performance enhancements. Furthermore, differently

from other works which used only one log coming

from a single WSE, we validated our results on three

different query logs, coming from three different

WSE, and referring to three different periods of time:

a single day, a week, and a month.

Analysis of the query logs

In order to evaluate the behavior of different caching

strategies we used query logs from the Tiscali,

EXCITE, and Altavista search engines. In particular

we used Tiscali, a trace

Query Log Queries Distinct

Queries

Date

Excite 2,475,684 1,598,908 Sep 26
th

1997

Tiscali 3,278,211 1,538,934 Apr

2002

AltaVista 6,175,648 2,657,410 A week

of 2001

Table 1.1: Main characteristics of the query logs

used.

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143813 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 130

of the queries submitted to the Tiscali WSE engine

(www.janas.it) on April 2002, Excite, a publicly

available trace of the queries submitted to the

EXCITE WSE (www.excite.com) on September 26th

1997, and Altavista a query log containing queries

submitted to Altavista on a week of 20024. Each

record of a query log refers to a single query

submitted to the WSE for requesting a page of

results, where each page contains a fixed amount of

URLs ordered according to a given rank. All query

logs have been preliminarily cleaned by removing the

useless fields. At the end of this preprocessing phase,

each entry of a query log has the form (keywords,

page no), where keywords corresponds to the list of

words searched for, and page no determines which

page of results is requested. We further normalize the

query log entries by removing those referring to

requests of more than 10 results-per-page. In

particular, since a WSE globally reorders the results

according to a given rank, the top 10 results will be

included in page 1, the next 10 results in page 2, and

so on.

 Table 1.1 reports the main characteristics of the

query logs used. While about the 46% of the total

number of queries appearing in the relatively recent

Tiscali and Altavista logs are distinct, in the Excite

log this percentage increases up to 64%. Therefore,

only looking at the numbers of distinct queries

appearing in the three logs, we could deduce that the

locality found in the Excite log, i.e. the oldest one,

might be less than in the Tiscali ones, since only the

36% (about 54% in the Tiscali and Altavista logs) of

all its queries corresponds to re-submissions of

previously submitted queries.

The SDC policy

In this section we describe SDC (Static and Dynamic

Cache) a novel caching policy. Actually, this is a

work extending a previously presented research. The

idea that drove the entire design process is the

following: Is it possible to find a policy suitable for

caching data which appear in accordance with a

Zipf’s law distribution, and having a time complexity

equal to that of LRU/SLRU?

 SDC is a two-level policy which makes use of

two different sets of cache entries. The first level

contains the so called Static Set. It consists of a set of

statically locked entries filled with the most frequent

queries appeared in past users’ sessions. The Static

Set is periodically refreshed. The second level

contains the Dynamic Set. Basically, it is a set of

entries managed by a classical replacement policy

(i.e. LRU, SLRU, etc.).

 The behavior of SDC in the presence of a

query q is, thus, very simple. First it looks for q in the

Static Set, if q is present it returns the associated page

of results back to the user. If q is not contained within

the Static Set then it proceeds by looking for q in the

Dynamic Set. If q is not present, then SDC asks the

WSE for the page of results and replaces a page

according to the replacement policy adopted.

 Note that the idea of using a statically locked

cache is present also in the work from Markatos

where he studied a pure static caching policy for

WSE results and compared it with a pure dynamic

ones.

 The rationale of adopting a static policy, where

the entries to include in the cache are statically

decided, relies on the observation that the most

popular queries submitted to WSEs do not change

very frequently. On the other hand, several queries

are popular only within relatively short time

intervals, or may become suddenly popular due to,

for example, un-forecasted events (e.g. the 11th

September 2001 attack). Basically, if the queries are

distributed following a sort of Zipf’s law behavior,

then we may statically identify a set of queries to

insert in the first level of the cache.

 The advantages deriving from this novel

caching strategy are two-fold. First, SDC present

many interesting capabilities achieving the main

benefits of both static and dynamic caching. In fact:

• the results of the most popular of the queries can

always be retrieved from the Static Set even if some

of these queries might be not requested for relatively

long time intervals;

• the Dynamic Set of the cache can adequately cover

sudden interests of users. Second, SDC may enhance

performance. In fact, since accesses in the read-only

section can be made concurrently without

synchronization, this would eventually bring to good

performance in a multi-threading environment.

 Implementation Issues

First level - Static Set

The implementation of the first level of our caching

system is very simple. It basically consists of a

lookup data structure that allows to efficiently access

a set of fstatic · N entries, where N is the total

http://www.excite.com/

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143813 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 131

number of entries of the whole cache, and fstatic the

factor of locked entries over the total. fstatic is a

parameter of our cache implementation whose

admissible values ranges between 0 (a fully dynamic

cache) and 1 (a fully static cache). The static cache

has to be initialized off-line, i.e., with the results of

most frequent queries computed on the basis of a

previously collected query log.

 Each time a query is received; SDC first tries

to retrieve the corresponding results from the Static

Set. On a cache hit, the requested page of results is

promptly returned. On a cache miss, we also look for

the query results in the Dynamic Set.

Second level - Dynamic Set

The Dynamic Set relies on a replacement policy for

choosing which pages of query results should be

evicted from the cache as a consequence of a cache

miss and the cache is full. Literature on caching

proposes several replacement policies which, in order

to maximize the hit-ratio, try to take the largest

advantage from information about recency and

frequency of references. SDC surely simplifies the

choice of the replacement policy to adopt. The

presence of a static read-only cache, which

permanently stores the most frequently referred

pages, makes in fact recency the most important

parameter to consider.

 As a consequence, some sophisticated (and

often computationally expensive) policies

specifically designed to exploit at the best both

frequency and recency of references are probably not

useful in our case. However, since we want to

demonstrate the advantage of the SDC policy over

the others, we implemented some of these

sophisticated replacement policies. Currently, our

caching system supports the following replacement

policies: LRU, LRU/2 which applies a LRU policy to

the penultimate reference, FBR, SLRU, 2Q, and PDC

which consider both the recency and frequency of the

accesses to cache blocks.

 The choice of the replacement policy to be

used is performed at start-up time, and clearly affects

only the management of the (1−fstatic) ·N dynamic

entries of our caching system.

 Hereinafter we will use the following notation

to indicate the different flavor of SDC. We will use

SDC-rs to indicate SDC with replacement policy r,

fstatic = s. For example: SDC-LRU0.4 means we are

referring to SDC using LRU as the replacement

policy, and fstatic = 0.4. Another example could be

the following: SDC-[LRU/SLRU]0.4 which indicate

SDC with a replacement policy chosen among LRU,

and SLRU. Moreover, we will use the jolly character

*, to indicate all the possible choice for the parameter

replaced by *. So, SDC-*s will indicate SDC with

any replacement policy and fstatic = s; while, SDC-

p_ will indicate SDC with the replacement policy p

and any value of fstatic.

The SI unit for magnetic field strength H is A/m.

However, if you wish to use units of T, either refer to

magnetic flux density B or magnetic field strength

symbolized as μ0H. Use the center dot to separate

compound units, e.g., ―A·m
2
.‖

II. CONCLUSION

We are currently exploring several ways of

improving our topic-sensitive PageRank approach.

As discussed previously, discovering sources of

search context is a ripe area of research. An- other

area of investigation is the development of the best

set of basis topics. For instance it may be worthwhile

to use a finer-grained set of topics, perhaps using the

second or third level of directory hierarchies, rather

than simply the top level. However, a fine-grained set

of topics leads to additional efficiency considerations,

as the cost of thenaive approach to computing these

topic-sensitive vectors is linear in the number of basis

topics.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to all

those people who have given their heart willing

support in making this completion a magnificent

experience.

I am thankful to Ms. Megha Goel, H.O.D,

Department of Technology, Dronacharya College

of Engineering, Gurgaon for providing us good and

healthy environment for the preparation of this

dissertation.

I am also thankful to my dissertation guide Mr.

Vinod Kumar, Assistant Prof., Department of

Information Technology for his timely comments

and suggestions. He advised on the details of my

dissertation and gave invaluable discussions.

Without the guidance of my supervisor, this

dissertation may not have well materialized.

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143813 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 132

I am really grateful to my parents for their support,

appreciation and encouragement. A very special

acknowledgement to authors of various research

papers and books which helped me a lot.

REFERENCES

[1] The Google Search Engine: Commercial search

engine founded by the originators of PageRank.

http://www.google.com/.

[2] The Open Directory Project: Web directory for

over 2.5 million URLs. http://www.dmoz.org/..

[3] Lawrence Page, Sergey Brin, Rajeev Motwani,

and Terry Winograd. The PageRank citation

ranking: Bringing order to the web. Stanford

Digital Libraries Working Paper, 1998.

[4] Robert M. Gray and David L. Neuho_.

Quantization. IEEE Transactions on Information

Theory, 44(6), October 1998.

[5] Krishna Bharat and Monika R. Henzinger.

Improved algorithms for topic distillation in a

hyper- linked environment. In Proceedings of the

ACM-SIGIR, 1998.

[6] Sergey Brin, Rajeev Motwani, Larry Page, and

Terry Winograd. What can you do with a web in

your pocket. In Bulletin of the IEEE Computer

Society Technical Committee on Data

Engineering, 1998.

[7] Sergey Brin and Larry Page. The anatomy of a

large-scale hypertextual web search engine. In

Proceedings of the Seventh International World

Wide Web Conference, 1998.

[8] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,

P. Raghavan, and S. Rajagopalan. Automatic

resource compilation by analyzing hyperlink

structure and associated text. In Proceedings of

the Seventh International World Wide Web

Conference, 1998.

[9] Jon Kleinberg. Authoritative sources in a

hyperlinked environment. In Proceedings of the

ACM- SIAM Symposium on Discrete

Algorithms, 1998.

[10] Andrew McCallum and Kamal Nigam. A

comparison of event models for naive bayes text

classification. In AAAI-98 Workshop on

Learning for Text Categorization, 1998.

[11] Ian H. Witten, Alistair Mo_at, and Timothy C.

Bell. Managing Gigabytes. Morgan Kaufmann

Publishers, San Francisco, 1999.

[12] Krishna Bharat and George A. Mihaila. When

experts agree: Using non-a_liated experts to rank

popular topics. In Proceedings of the Tenth

International World Wide Web Conference,

2001.

[13] Taher H. Haveliwala. Topic-sensitive PageRank.

In Proceedings of the Eleventh International

World Wide Web Conference, May 2002.

[14] Soumen Chakrabarti. Mining the Web:

Discovering Knowledge from Hypertext Data.

Morgan- Kaufmann Publishers, San Francisco,

CA, 2002.

[15] Matthew Richardson and Pedro Domingos. The

Intelligent Surfer: Probabilistic Combination of

Link and Content Information in PageRank,

volume 14. MIT Press, Cambridge, MA, 2002.

[16] Soumen Chakrabarti, Mukul M. Joshi, Kunal

Punera, and David M. Pennock. The structure of

broad topics on the web. In Proceedings of the

Eleventh International World Wide Web

Conference, 2002.

[17] Michelangelo Diligenti, Marco Gori, and Marco

Maggini. Web page scoring systems for

horizontal and vertical search. In Proceedings of

the Eleventh International World Wide Web

Conference, May 2002.

[18] Ronald Fagin, Ravi Kumar, and D. Sivakumar.

Comparing top k lists. In Proceedings of the

ACM-SIAM Symposium on Discrete

Algorithms, 2003.

[19] Glen Jeh and Jennifer Widom. Scaling

personalized web search. In Proceedings of the

Twelfth International World Wide Web

Conference, May 2003.

[20] Sepandar D. Kamvar, Taher H. Haveliwala,

Christopher D. Manning, and Gene H. Golub.

Ex- trapolation methods for accelerating

PageRank computations. In Proceedings of the

Twelfth International World Wide Web

Conference, May 2003.

[21] Mike Thelwall. Quantitative Comparison of

Search Engine Results, School of Computing

and Information Technology, 2008.

[22] Web Search Engines – A Comparative Study by

Inderjeet Singh Oberoi and Mridul

http://www.google.com/
http://www.dmoz.org/

