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Abstract- Neural Network with perforation methodology 

has begun as a promising solution for Digital 

application in VLSI Technology.This short-term work 

suggests improved biological Hindmarsh–Rose (HR) 

neuron model that is more appropriate for efficient 

implementation on digital platforms. S imulation results 

show that the model can replicate the desired 

performances of the neuron. The proposed model is 

examined,in terms of digital implementation possibility 

and cost,targeting a low-cost hardware implementation. 

Hardware implementation on a field-programmable 

gate array shows that the improved model mimics the 

biological behavior of dissimilar types of neurons, with 

higher performance and noticeably lowers hardware 

overhead cost compared with the original HR model. 

Index Terms- Field-Programmable Gate Array(FPGA), 

Spiking Neural Network(SNN), Hindmarsh–

Rose(HR)Neuron Model. 

I. INTRODUCTION 

The time period neural network became historically 

used todiscuss with a network or circuit of organic 

neurons.The modern-day usage of the term regularly 

refers to artificialneural networks, which can be 

composed of syntheticneurons or nodes. Thus the 

term has two wonderful usages like Biological neural 

networks are made from realorganic neurons that are 

linked or functionallyassociated inside the peripheral 

concerned system or the criticalissue machine. In the 

sector of neuroscience, they'reregularly identified as 

organizations of neurons that perform aparticular 

physiological feature in laboratory analysis. Artificial 

neural networks are made ofinterconnecting synthetic 

neurons (programmingconstructs that mimic the 

properties of biologicalneurons). Artificial neural 

networks may also either beused to advantage anreal 

biological neuralnetworks, or for fixing artificial 

intelligenceissues with out always developing a 

model of areal organic device. The actual, organic 

anxiousdevice is distinctly complicated and includes 

some featuresthat may seem superfluous primarily 

based on an knowledgeof artificial networks. 

The brain, neural networks and computer systems 

likwNeural networks, as utilized in artificial 

intelligence,have historically been considered as 

simplified fashionsof neural processing inside the 

mind, despite the fact that therelation between this 

model and mind organicstructure is debated, as little 

is known about howthe brain surely works. A 

problemof present day studies in theoretical 

neuroscience is thequery surrounding the diploma of 

complexity andthe houses that character neural 

factors ought tohave to reproduce something such as 

animalintelligence.  

Historically, computer systems developed fromthe 

von Neumann structure, that's primarily based 

onsequential processing and execution of 

expresscommands. On the opposite hand, the origins 

of neuralnetworks are based totally on efforts to 

model recordsprocessing in organic systems, which 

may additionally dependlargely on parallel 

processing in addition to implicitinstructions 

primarily based on popularity of patterns of'sensory' 

access from outside assets. In different words,at its 

heart a neural network is a complexstatistical 

processor (in preference to being tasked 

tosequentially procedure and execute). Neural coding 

isworried with how sensory and different information 

isrepresented within the brain through neurons. The 

principal goal ofanalyzing neural coding is to 

represent thedating among the stimulus and the man 

or womanor ensemble neuronal responses and the 

relationshipamong electric pastime of the neurons 

inside theensemble. It is concept that neurons can 

encode eachdigital and analog data. 

Neural networks and synthetic intelligence: A 

neuralnetwork (NN), inside the case of synthetic 

neurons referred to assynthetic neural network 
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(ANN) or simulated neuralnetwork (SNN), is an 

interconnected group of naturalor artificial neurons 

that uses a mathematical orcomputational model for 

records processingprimarily based on a 

connectionistechnique to computation.In maximum 

instances an ANN is an adaptive device 

thatmodifications its shape based totally on external 

or innerrecords that flows thru the network. In 

morepractical terms neural networks are non-

linearstatistical data modeling or decision making 

tools.They can be used to model complex 

relationshipsbetween inputs and outputs or to find 

patterns in data.However, the paradigm of neural 

networks - i.e.,implicit, not explicit , learning is 

stressed – seemsmore to correspond to some kind of 

naturalintelligence than to the traditional 

ArtificialIntelligence, which would stress, instead, 

rule-basedlearning. 

II. RELATED WORKS 

A biological neuron is a dynamical system that 

produces dynamicalbehaviors, which can be 

described by a set of differentialequations [13]–

[22].Severalbiologicalneuron 

modelshavebeenreported.Themostsuccessful and 

widely used neuron model, the Hodgkin–

Huxley(HH) model [23], has been described. The 

ionic mechanismand electrical current on the 

membrane surface are taken intoconsideration in this 

model. After that, the FitzHugh–Nagumo(FHN) 

neuron model, which is the simplified version of 

theHH neuron model, was proposed [24]. The 

Morris–Lecar neuronmodel is a conductance-based 

model, and it was proposed[25] in order to describe 

oscillations in barnacle giant musclefiber and is thus 

biologically significant. The Hindmarsh–Rose(HR) 

neuron model [26] displays several neuronal 

behaviorsand an accurate output-frequency-to-input-

current relationship. 

Although digital computation consumes more silicon 

area andpower per function in comparison with an 

analog realization,its development time is 

considerably lower and is robust againstpower supply 

fluctuations and thermal noise. The main objective of 

this brief is to achieve a low hardware overhead anda 

highly efficient realization of two coupled neurons 

for usein major neural networks as a main block. This 

brief presentsa significantly simplified 

implementation of the HR neuronmodel. 

III. SUGGESTEDSYSTEM 

HR piecewise linear model: In this section, the 

proposed modification to the originalmodel is 

presented. The main motivation for 

thesemodifications is the implementation cost of the 

modifieddesign. The membrane potential equation of 

the HR modelcan be rewritten, Where a=1.394, 

b=0.189, c=1.40, d=1.42,and mi, 0<i<4 are the slopes 

of lines in the PWL5approximation of the 

p(x)function. Fig1 illustrates thematching accuracy 

between the original HR and HRpiecewise 

linear(HRPWL) neuron models. Fig.1(b) showsthat 

the g(x) can be approximated by five PWL 

segments(shown with red dotted lines), representing 

linear andnonlinear terms in the equation. The mean 

absolute error(MAE) is another useful measure 

widely used in modelevaluations. Also, MAE 

measures how far away predictedvalues are from 

observed values and is one of a number ofways to 

compare forecasts with their eventual outcomes[19]. 

MAE is a linear score, which means that all 

theindividual differences are weighted equally on the 

average.As the name suggests, MAE is an average of 

the absoluteerrors |ei| = |xpropi –xorigi|, where xpropi 

is the predictionand xorigi is the true value. In this  

brief, MAE is given by 

    
 

 
∑ |  |
 
    ………………….(1) 

Synaptic coupling model: In this section, the 

dynamical behaviors of two coupledHR neurons are 

presented. Accordingly, we can see thevarious 

dynamical behaviors as the current stimulus of 

thepresynaptic neuron, the parameter r that controls 

the spikingfrequency, and the conductance 

coefficient of the synapticterminal are varied. The 

synaptic terminal acts as an activegate, and when the 

presynaptic voltage level reaches itsthreshold value, 

voltage transmission can occur. This statedepends on 

the input stimulus, the coupling of the neuronswith 

the same potentials (xpre = xpost), and when 

twocoupled neurons are synchronized. As mentioned 

previously,the synchronization effects of coupled 

neurons aresignificant for the processing of 

biological signals and playsignificant roles in the 

elucidation of diseases, such asParkinson’s disease, 

essential tremor, and epilepsy.Consequently, by the 

appropriate selection of the inputcurrent stimulus and 

synaptic conductance coefficient, thesynchronization 

effects can be controlled. 
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Fig. 1. Scheduling diagram of the original and 

proposed models. (a) Membranepotential x of the 

original model. (b) Recovery variable y of the 

original model.(c) Bursting variable z of the original 

model. (d) Membrane potential x of theproposed 

model. (e) Recovery variable y of the proposed 

model. (f) Burstingvariable z of the proposed model. 

IV DESIGN AND HARDWARE 

IMPLEMENTATION 

This section presents the hardware implementation 

structurefor the proposed model. In order to obtain an 

improvedcomparison in the number of used 

multipliers between theoriginal and proposed models, 

As the first step, it isnecessary to discretize equations 

for both models; therefore,we utilize the Euler 

method. The second step is the bit-

widthdetermination of the hardware functional units. 

The span ofthe membrane potential is −2 to 2V, and 

the minimum bitsfor implementing the membrane 

potentials are 3b. In the bitwidth determination, if the 

maximum logic shifts to the rightor left are not 

considered, then overflow can occur. To avoidany 

overflow and also increasing accuracy of 

thecalculations, a bit width of 20 that consists of 8b 

for theinteger part and 12b for the fraction is 

considered. 

 
Fig.2. Simulation result for the existing recovery 

variable. 

 
Fig.3. Simulation result for the proposed 

recoveryvariable. 

 
Fig. 4. Simulation result for the existing bursting 

variable. 

 
Fig. 5. Simulation result for the proposed bursting 

variable. 

V. CONCLUSION 

A multiplierless model based on the 

Perforationtargeting low cost digital implementation 

has beenpresented. Simulation results and hardware 

realization showthat the proposed model has 

acceptable error and is suitablefor digital 

implementation. This proposed model has 

lowercomputational and hardware costs compared 



© January 2017 | IJIRT | Volume 3 Issue 8| ISSN: 2349-6002 

IJIRT 144199 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  218 

 

with theoriginal neuron model. This system is 

convenientlyimplemented on FPGA. This hardware 

is used todemonstrate different dynamics of the HR 

neuron model,depending on the parameter values and 

current stimulus,producing different patterns of 

spiking activity with minimalcomputational error. 
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