
© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002 

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 109 

 

INCREMENTAL ONTOLOGY INFERENCE FOR 

SEMANTIC WEB BASED ON MAPREDUCE 

APPROACH  

 

T. Revathi1, U. Uma Devi2 
1Senior Professor& Head, Dept of IT, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India 

2PG Scholar, Dept of IT, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India 

 

Abstract — In the fast growing internet world, web 

content increase day by day. This demands the 

knowledge searching and reasoning in this big data. The 

knowledge is represented in the semantic web using web 

ontology languages. Existing methods take long time to 

derive inferences and also it performs full reasoning 

when new data stream arrives. In this paper an 

Incremental Ontology Inference (IOI) Method for 

handling large number of triples (subject, predicate, 

and object) is proposed. In IOI, the triples for each type 

are collected and a forest like data structure is built and 

then performs reasoning. The storage requirement is 

also reduced by merging the triple reasoned from other 

triple into a set of triples with the same values. Hence, it 

provides fast traversal of triples in the tree and 

retrieves the query results efficiently. MapReduce 

paradigm is used to implement the proposed approach. 

The results for user query are reasoned and retrieved 

effectively. 

Index Terms— Big data, Knowledge Searching, 

MapReduce, Ontology Inference, Semantic Web. 

I. INTRODUCTION 

Currently, the web is the major source of 

giant data. Every day the flow of data increases at the 

web. This makes the challenge of identifying the 

useful things from the available data. The normal 

human effort is not enough to infer knowledge from 

such rich web resource. The Machine should also be 

having the knowledge to understand this data deluge 

and reason information. Semantic web [1] helps in 

making the machines realize the web. The resources 

on the web are expressed with the web ontology 

language, and this aid computer to identify the 

essential information from this current web. The 

major application of semantic web includes 

healthcare and life sciences [2], machine intelligence 

[3], and e-marketplace activities [4]. 

 The statistics [5] shows that the size of the 

semantic web is approximately to contain 4.4 billion 

triples in 2009 and it is currently 20 billion triples. Its 

development rate is still increasing. Hence, this 

creates the problem of knowledge hunting over such 

big data. 

Obtaining inference from incremental web 

resource faces three challenges: 1) Infer knowledge 

from correct triple is difficult due to its dispersed 

data; 2) Increasing Volume of data needs to be 

processed in a scalable manner; 3) Satisfying user 

query desires high-speed processing. 

The fundamental description of information 

on the web is the Resource Description Framework 

(RDF) [6]. It is vital for the semantic web. Every 

statement on the web is symbolized to a triple. It 

expresses the relationship between the two resources. 

For example, Fig. 1 shows one way of representing 

the statement, "India is a country" in RDF is as the 

triple: "India" is the subject, "rdf:type" is the 

predicate, and "Country" is the object.  

Fig.1 Representation Of Triple 

RDF Schema (RDFS) provides vocabulary 

for describing how properties and classes are 

intended to be used together in RDF data. The Web 

Ontology Language (OWL) [7] extends RDF and 

RDFS. Its major intention is to bring the expressive 

and reasoning power of description logic to the 

semantic web.OWL consists of three languages with 
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increasing expressivity: OWL Lite, OWL DL and 

OWL Full. All the three languages allow us to 

describe classes, properties, and instances. The 

weaker languages have limitations on what can be 

declared or how it may be declared. The Inference is 

derived from this knowledge represented in the form 

of triples. Some triples in groups with others can 

provide new inference. This is done through the set 

of policies. Machines uses this policy set to derive 

the inference from the available triples. 

II. LITERATURE REVIEW 

These days reasoning semantic web have 

received much attention from both academic world 

and the business world. Lots of reasoning engines 

have been developed to hold the reasoning over 

semantic web.  

Guo et al., [4] proposed a novel RuleXPM 

(Rule XML Product Map) method that infers the next 

generation electronic marketplace (e-marketplace) 

activities. The RuleXPM architecture supports the 

concept separation strategy and makes the designed 

RuleXPM inference engine generic and suitable for 

use in all types of e-marketplace. In this architecture, 

the inference engine is modular, i.e., each inference 

module is independent and reusable and the data in 

use can be dynamically generated, and is contextual. 

Anagnostopoulos and Hadjiefthymiades [8], 

proposed fuzzy inference engines based on the 

knowledge-representation (KR) model to enhance the 

context inference. The capability of a context aware 

system is to classify context and infer specific 

situations can be facilitated by proper KR models. A 

Fuzzy set based model can accommodate the 

vagueness inherent in context capturing. A fuzzy set 

is used for representing imprecise context in a human 

understandable form. This methodology is generic 

and can be applied to different inference schemes in 

order to improve the inference capability of the 

classifier and deal with mutual exclusion inference. 

This model generates specific complementary fuzzy 

rules used for increasing the accuracy of the 

classification procedure for the well specified 

information in Semantic web. Applications can 

handle context as flexibly as their users would expect 

by using this method, but it is not suitable for all 

situations of the user.  

Paulheim and Bizer, [9] studied the problem 

of inference with noisy data and presented the 

SDType method based on the statistical distribution 

of types in RDF datasets to deal with noisy data. 

Milea et al., [10] presented a temporal extension of 

the OWL for expressing time-dependent information. 

These ontology-reasoning methods are conducted on 

a single machine or local cluster. The reasoning 

speed is directly dependent on the scale of the 

ontology, which is not suitable for a large ontology 

base. 

To deal with a large base, some researchers 

moved to distributed reasoning methods. Weaver and 

Hendler, [11] presented a method for materializing 

the complete finite RDFS closure. It is the first 

method to provide RDFS inference on such large data 

sets in such low times and scalable manner. This 

maintains soundness and completeness without 

requiring any cumbersome preparation of the data. 

This method increases the processing speed by means 

of parallel inference. It lacks with scalability and 

expressivity. Urbani et al., [12] proposed a scalable 

distributed reasoning method by some nontrivial 

optimisations for encoding the RDFS ruleset in 

MapReduce and exploited the MapReduce 

framework for efficient large-scale Semantic Web 

reasoning and implements on the top of Hadoop. This 

reasoning technique performs quick reasoning using 

Hadoop Distributed File System (HDFS) and high 

data correlation. The drawback of using this method 

is it does not focus on quality of reasoning. Schlicht 

and Stuckenschmidt, [13] highlighted the drawback 

of the MapReduce-based reasoning and then 

introduced a Mapresolve method for more expressive 

logics. It adapts the standard method for distributed 

resolution that avoids repetition of resolved 

inferences. For the limited expressivity of RDFS, the 

repetition can be avoided because every MapReduce 

job is executed only once Dean and Ghemawat, [14]. 

For each step, the clause sets are parsed and written 

to disc, generates needless overhead. 

 Still, these techniques don’t consider the 

effect of incremental data volume, and does not show 

the processing of users’ queries. To answer the 

demands on a user query, they need to obtain the 

entire RDF closure by reasoning and save them to 

hard disk. The data volume of RDF closure is 

ordinarily larger than original RDF data. The storage 

of RDF closure is thus not a small amount and the 

query on it takes nontrivial time. Furthermore, as the 

data volume increases and the ontology base is 
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updated, these methods require the re-computation of 

the entire RDF closure every time when new data 

arrive. To avoid such time-consuming process, 

incremental reasoning techniques are proposed. 

 Urbani et al., [15] proposed a scalable 

parallel inference using MapReduce. This method 

calculates the RDF closure for large scale RDF 

dataset by adopting algorithms to process the 

statements based on input data as incremental 

reasoning. This technique identifies the accurate 

status, which either existing or newer one does not 

provide the relationship between the newly arrived 

and existing data. Grau et al., presented an 

incremental reasoning approach based on modules 

that can reuse the information obtained from the 

previous versions of ontology [16]. This method is 

used for OWL reasoning speed is a huge problem 

while using this method. 

 Bo Liu et al., proposed an Incremental and 

Distributed inference method based on Mapreduce 

and Hadoop [17]. This method speeds up the 

updating process with newly arrived data and fulfills 

the requirements of end users for online queries that 

leverage the old and new data to minimize the 

updating time and reduce the reasoning time when 

facing big RDF datasets. Though this inference 

method speeds up the updating and reasoning, it 

concentrates only on the RDF and does not consider 

other web definition languages like OWL. 

In this paper, we propose an IOI method that 

reasons out from the ontology describing web 

contents considering the OWL set operator elements, 

Inverse element and RDFS elements. To make the 

reasoning in the faster way Hadoop framework [18] 

can well control over the existing and newly derived 

triples. This reduces the inference time issues faced 

by large web contents. 

III. ONTOLOGY INFERENCE BASED ON OWL 

AND RDF ELEMENTS 

This section presents the IOI over large 

scale web contents described with web ontology 

description languages include RDF and OWL. Fig. 2 

shows the architectural layout for the inference, 

presenting the steps involved in the ontology 

reasoning. 

The input to the IOI method is in the form of 

triples. The URLs in the triple are encoded with the 

corresponding hash code initially. Then OWL+RDF 

reasoning step process the encoded triples and obtain 

new reasoned triple incrementally. After that Forest 

Creation (FC)/Effective storage (ES) modules are 

performed to construct tree based storage of triples. 

The query processing step takes the user’s query and 

answers them with results obtained after reasoning. 

A. Hash Coding 

The web page contains many statements and 

they are represented in the semantic web as the 

sequence of long URIs to uniquely identify each web 

resource. This makes the processing and reasoning 

over the URIs complexity. To solve this issue, the 

hash code for each URI in the triple is generated. A 

unique numeric identifier is assigned to each one of 

them. 

  

 

 

 

 

 

 

 

 

Fig. 2 Incremental Ontology Inference 

Triple file is given as the input to the MapReduce 

Program. It splits the triples into <subject, predicate, 

object> line by line in the map function. Then the 

reduce function calculates the hash code for each 

unique URI emitted from the map.  

 The steps after calculating the hash code are 

all based on only with the encoded triple format 

obtained from hash coding to reduce the storage and 

to speed up the upcoming inference process. 

B. Prior Reasoning with OWL Elements 

 The main inference exists in the triples 

having the predicate as property and class. Therefore, 

before reasoning out from the RDF elements like 
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rdfs:subProperty, rdfs:subClassOf, rdfs:domain, and 

rdfs:range, we have to reason out of the OWL 

elements. Because the triples infers from 

owl:unionOf, owl:intersectionOf, and owl:inverseOf 

can also trigger other inference of class, domain, and 

range. Therefore, prior reasoning with OWL 

elements is done to make the reasoning process 

better. 

 Two reasoning steps consider here are 

reasoning from Set Operators and Inverse. OWL 

supports set operators like union and intersection 

elements. Algorithm 1 shows the reasoning over set 

operator and Algorithm 2 shows the reasoning over 

Inverse element. 

Algorithm 1 - Reasoning over Set operator 

Input: All Triples T with predicate owl:unionOf and 

owl:intersectionof 

{ 

for each triple t <s,p,o> in T 

     if p is owl:unionOf  

      add triple <o,rdfs:subClassOf,s>to R 

     if p is owl:intersectionOf  

     add triple <s,rdfs:subClassOf,o>to R 

return R 

} 

Output: Reasoned rdfs:subClassOf Triples R 

 

Algorithm 2 - Reasoning over Inverse 

Input: All triples T having predicate as 

owl:inverseOf 

{ 

for each triple t<s,p,o> in T 

      if p is owl:inverseOf  

       for each triple t in T 

       if <s,rdfs:domain,o1> exists in T 

           add triple <o, rdfs:domain, o1> to R 

       if <s,rdfs:range,o1> exists in T 

           add triple <o, rdfs:range, o1> to R 

return R 

} 

Output: Reasoned rdfs:domain & rdfs:range triples 

R 

 

The owl:unionOf property relates a class to 

a set of class descriptions. The inference exist with 

this is, if a class X is the owl:unionOf a set of classes, 

say A, B,  and C, then each of A, B, and C, is 

rdfs:subClassOf X. For example SweetFruit and 

NonSweetFruit are the unionOf the Fruit class, then 

we can infer that both SweetFruit and NonSweetFruit 

are the rdfs:subClassOf the class Fruit. 

Similar to the owl:unionOf property 

owl:intersectionOf also relates a class to a set of class 

descriptions. The inference exist with this is, if a 

class X is the owl:intersectionOf a list of classes, say 

A, B, and C, then X is rdfs:subClassOf of each of 

A,B, and C. For example, if WhiteWine is exactly the 

intersection of the class Wine and the set of things 

that are white in color, then we can infer that 

WhiteWine is an rdfs:subClassOf Wine. 

Properties always have a direction, from 

domain to range. It is difficult to define relations in 

both directions: persons own cars, cars are owned by 

persons. The owl:inverseOf  construct can be used to 

define such an inverse relation between properties. 

The inference exist here is, If A is owl:inverseOf  B 

and A domain is U Then B domain U can be  

inferred, and similarly if  A range is U Then B range 

is also U. 

C. Forest Creation 

In order to efficiently handle the inference 

and avoid the searching over entire ontology base the 

forest data structure is maintained. The forest may 

consist of one or multiple trees. The tree gets updated 

when incremental triples occur. Each node in a tree 

stands for a subject or object, and the directed link 

between them shows their sub-property relation. FC 

is further divided into Property FC (PFC), Class FC 

(CFC), and Domain/Range FC (DRFC).  

PFC is a directed forest constructed based 

on all the triples that have predicate 

rdfs:subPropertyOf, or have predicate rdf:type and 

object rdfs:ContainerMembershipProperty. Fig. 3 

shows the PFC Creation, In this ‘hasSon’ is the 

rdfs:subPropertyOf  ‘hasChild’. So the directed graph 

from ‘hasSon’ to ‘hasChild’ is drawn. Similarly for 

all the triples with predicate 

rdfs:subPropertyOf(RPO) is drawn.  
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Fig. 3 PFC Creation 

CFC is a directed forest constructed based 

on all the triples that have predicate rdfs:subClassOf, 

or have predicate rdf:type and object rdfs:Datatype or 

rdfs:Class. Each node in a tree stands for a subject or 

object, and the directed link between them shows 

their sub-class relation. Fig. 4 shows the CFC 

Creation, In this ‘Europe’ is the rdfs:subClassOf 

‘Country’. So the directed graph from ‘Europe’ to 

‘Country’ is drawn. Similarly for all the triples with 

predicate rdfs:subClassOf (SCO) is drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 CFC Creation 

DRFC is a directed forest constructed based 

on the triples that have predicates rdfs:domain or 

rdfs:range, in which each node in the tree stands for a 

subject or object and the directed link shows the 

domain or range relation between the node pair. Fig. 

5 shows the DRFC Creation, In this ‘NorthCorner’ 

has the rdfs:range as ‘Location’. So the directed 

graph from ‘NorthCorner’ to ‘Location’ is drawn. To 

differentiate the rdfs:domain (R) and rdfs:range (D) is 

marked with the dotted line and dark line 

respectively. Similarly for all the triples with 

predicate rdfs:range and rdfs:domain are drawn. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 DRFC Creation 

D. Reasoning over FC 

The next thing after FC is to perform 

reasoning. Since FC contains set of trees, Traversing 

in the tree is by two ways, either in the forward or 

reverse direction of the tree. If we start from root or 

endpoint to search node, then it is called “forward 

path” otherwise if we traverse from search node to 

the root or endpoint then it is called “reverse path”. 

 Reasoning FC is also done in three ways 

similar to the creation process. An Algorithm 3, 4, 

and 5 shows the Reasoning over PFC, CFC, and 

DRFC respectively. The input to the Algorithm is 

Assertional Triples (AT). AT is a triple not having 

the predicate as subProperty, subClassOf, domain 

and range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Reasoning Of PFC 

Algorithm 3 describes that for the given AT 

if its predicate exists in the PFC then new triple be 

generated. Fig. 6 shows the example for reasoning 
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over PFC. Given the triple <john hasSon james>, the 

predicate hasSon exist in the PFC. Therefore, traverse 

through the forward path of PFC. The path is 

hasChild fatherOf  parentOf. Then for each node 

in the forward path generate the triple by replacing 

the predicate with that node. Thus the final results are 

{<John hasChild James>, <John fatherOf James>, 

<John ParentOf James>}. 

Algorithm 3 - Reasoning over PFC 

Input: All AT and PFC 

{ 

for each node p in PFC 

      F<- forward path of p 

        for each node f in F 

           add triple t <s,p,o> to R 

return R 

} 

Output: Reasoned triple R 

 

Algorithm 4 describes that for the given AT 

and the DRFC, new triples can be reasoned. For the 

given triple, if its predicate is rdfs:domain and object 

‘o’ exist in the DRFC then new triple be generated. 

Similarly, if its predicate is rdfs:range  and subject ‘s’ 

exists in the DRFC then new triple be generated. 

Reasoning over DRFC is done prior to the CFC since 

it infers triples that trigger the reasoning of CFC.  

Algorithm 4 - Reasoning over DRFC 

Input: All AT and DRFC 

{ 

for each node p in DRFC 

     if p has a domain edge linked to node c 

         add triple <s,rdf:type,c> to R 

     if p has a range edge linked to node c 

         add triple <o,rdf:type,c> to R 

return R 

} 

Output: Reasoned triples R that triggers CFC 

Inference 

 

Algorithm 5 describes that for the given AT 

if its predicate is rdf:type and object o exist in the 

CFC then new triple be generated. Fig. 7 shows the 

example for reasoning over CFC. Given the triple 

<Austria rdf:type Europe>, the object Europe exist in 

the CFC. Therefore, traverse through the forward 

path of CFC. The forward path is EuropeCountry 

 Geographic Entity. Then for each node in the 

forward path generate the triple by replacing the 

object with that node. Thus the final results are 

{<Austria rdf:type Country> , <Austria rdf:type Geo 

Entity> }. 

 

Fig.7 Reasoning CFC 

Algorithm 5 - Reasoning over CFC 

Input: All AT and CFC 

{ 

for each node o in CFC 

 F <-- forward path of o 

 for each node f in F 

           add triple t<s,rdf:type,f> to R 

return R 

} 

Output: Reasoned rdf:type triples R 

 

E. ES Making 

 The AT we obtained from reasoning can be 

derived from others, so we can avoid storing all of 

them to make the storage efficient. For example, 

given two triples AT1: <s1, hasSon, o1> and AT2: 

<s1, fatherOf, o1> and the PFC in the derived triples 

for T1 are <s1, hasSon, o1>, <s1, hasChild,o1>, 

<s1, fatherOf, o1>, and <s1, parentOf, o1>, and 

those for T2 are <s1, fatherOf, o1> and <s1, 

parentOf, o1> which are all duplicated ones.  

 ES reduce the storage of AT that can be 

inferred from others. It is subdivided into two types 

according to FC as Property Effective Storage (PES) 
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and Class Effective Storage (CES). The information 

that cannot be derived is alone stored in ES. 

 PES concentrate on the AT that is having the 

same subject and object, but the predicates are 

different for each of AT. Similarly CES concentrate 

on the AT that is having the same subject and the 

predicate should be of rdf:type, but the object field of 

AT is different for each of them. Algorithm 6 and 7 

are aimed to build PES and CES respectively. 

The complexity of Algorithm 6 and 7 is O(mn) where 

‘m’ represents the number of triples in T and ‘n’ 

represents the number of nodes in PFC/CFC. 

Algorithm 6 - Making PES 

Input: PFC and a set of triples that have the same 

subject and object T = {<𝑆𝑖, 𝑃1, 𝑂𝑖>, <𝑆𝑖, 𝑃2, 𝑂𝑖>,. } 

 

{ 

T  {<𝑆𝑖, 𝑃1, 𝑂𝑖>, <𝑆𝑖, 𝑃2, 𝑂𝑖>,. . . } 

P = {P1,P2,..} all the predicates in T 

for each Pj in P 

 Q pj in the forward path of PFC 

 for each qi  in Q 

    if qi exists in P 

     Remove qi from P 

return PES = {Si ,Oi,P} 

} 

Output: PES = {𝑆𝑖  ,𝑂𝑖 , <Pi>} 

Algorithm 7 - Making CES 

Input:  CFC and a set of triples that have the same 

subject and predicate is rdf:type, T= { <𝑆𝑖, rdf:type, 

𝑂1>, <𝑆𝑖, rdf:type, 𝑂2>,…   } 

 

{ 

T {<𝑆𝑖, rdf:type, 𝑂1>, <𝑆𝑖, rdf:type, 𝑂2>,…   } 

O= {O1, O2...} all the objects in T 

for each Oj in O 

 Q Oj in the forward path of CFC 

 for each 𝐶𝑖 in Q 

    if 𝐶𝑖 exists in O 

     remove 𝐶𝑖 from O 

return CES = {𝑠𝑖,O} 

} 

Output: CES = {Si,<Oi>} 

 

 

 

 

 

 

Fig. 8 Incrementing FC and ES 

F. Updating FC and ES 

New triples are added to the tree without 

reconstructing the full tree. It was done by simply 

updating the already existing tree structure. When 

new triples arrive, new edges are added to the 

existing FC. Now we have two kinds of edges, i.e., 

existing edges referring to the triples that exist in the 

original FC, and incremental ones to those who’s 

subject or object or both do not exist in the FC. 

 Fig. 8 shows the incremental update of FC. 

Dark lines shows the already existing edges and 

dotted edges represent the incremental edges that are 

updated. 

The steps for updating the FC and ES are as follows. 

1. Generate new PFC by adding new edges to 

the existing PFC. 

2. Generate incremental PES based on the 

input triples, add the incremental PES to the 

existing PES, and run Algorithm 6 to 

generate new PES. 
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3. Generate incremental DRFC based on the 

incremental triples and add incremental 

DRFC to the existing DRFC. 

4. For the PES the predicate is in the reverse 

path of the incremental edges though the 

forward path of the incremental edge 

contains nodes in DRFC, generate the AT 

using Algorithm 4. 

5. Generate new CFC by adding new edges to 

the existing CFC. 

6. Generate the incremental CES based on the 

incremental AT and the triples generated in 

step 4, add the incremental CES to the 

existing CES, and run Algorithm 7 to make 

new CES. 

 

G. Query Retrieval 

The main goal of Calculating FC and ES is 

to reduce the query time. In order to search the node 

in the tree, traversing is possible in three ways. They 

are Forward, Backward, and Reachable node search. 

Based on these ways there exist six methods to 

retrieve the query result. 

Method 1: Input: <subject, object> pair, Output: 

predicate list 

 Search for <subject, object> pair in the PES and 

obtain the predicate list Pi. Here i is the count of 

different predicate obtained. Check for all the 

predicate values of i in the PFC and emit the list of 

nodes that are available in the forward path. 

Method 2: Input: <subject>and predicate <rdf:type>, 

Output: object list 

 Search <subject> in the CES and obtain the 

object list Oi .  Here i is the count of different objects 

obtained. Check for all the subject values of i in the 

CFC and emit the list of nodes that are available in 

the forward path. 

Method 3: Input: <predicate>, Output: <subject, 

object> pair  

 Search for the <predicate> in the reverse path of 

the PFC and obtain the list of nodes Pi in that path. 

Here i is the count of different predicate obtained. 

Check for all predicate values of i in the PES and 

emit the <subject, object> pair. 

Method 4: Input: predicate <rdf:type> and <object>, 

Output: <subject> 

 Search for the <object> in the reverse path of the 

CFC and obtain the list of nodes Oi in that path. Here 

i is the count of different objects obtained. Check for 

all object values of i in the CES and emit the 

<subject>. 

Method 5: Input: <subject> and predicate 

<rdfs:subPropertyOf>, Output: object list 

 Search for the <subject> in the PFC. If exists in 

the tree, then emit all the nodes in the forward path. 

Method 6: Input: <subject> and predicate 

<rdfs:subClassOf>, Output: object list 

 Search for the <subject> in the CFC. If exists in 

the tree, then emit all the nodes in the forward path. 

Basically eight types of query statements, 

including <?x ?y ?z>, <?x p ?z>, <s ?y ?z>, <?x ?y 

o>, <?x p o>, <s p ?z>, <s ?y o>, and <s p o> are 

available. For each type the procedure to execute the 

query is as follows. 

1) <?x ?y ?z>:Get all the <subject,object> 

pairs in the PES. Give them as input to 

Method1. Get the entire <subject> from 

CES and give them as input to Method 2. 

Output the entire result obtains from both 

the methods. 

2) <?x p ?z >:If  ‘p’ is rdf:type then give it as 

input to method 2. If ‘p’ is 

rdfs:subpropertyOf then give it as input to 

method 5. If ‘p’ is rdfs:subClassOf then give 

it as input to method 6. Otherwise if ‘p’ 

doesn’t satisfy any of the above if condition 

then gives the ‘p’ as the input to method 3. It 

outputs all the <?x ?z> pairs as the result. 

3) <s ?y o>:Give <s,o> as input to method1 

and emit the predicate result. Also give the 

<o> as input to method 4, if‘s’ exist in the 

result, then predicate <rdf: type> is also 

emitted as output. 

4) < s ?y ?z>:Get all the <subject, object>pair 

in PES for the ‘s’. Then execute the query 

type 3 for the obtained <subject,object>pair. 

Also check whether‘s’ exists in CES and 

obtain the object list ‘O’ by running method 

2. Emit the result as <s rdf:type O>. 

5) <?x ?y o>: Get all the <subject,object> pair 

in PES with ‘o’. Then execute the query 

type 3 for the obtained <subject,object>pair. 

Also check whether ‘o’ exists in CES and 

obtain the subject list S by running the 

method 4. Emit the result as <S rdf:type o>. 

6) <?x p o>:Execute the query type 2 and filter 

the result based on ‘o’. 
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7) <s p ?z>:Execute the query type 2 and filter 

the result based on ‘s’. 

8) <s p o>:Execute the query type 2 and filter 

the result with both ‘s’ and ‘o’. 

If for all the query type there is no result 

obtained means, then return empty to the user. 

IV. RESULTS & ANALYSIS 

To implement the proposed approach, Hadoop 

framework is used which enable the MapReduce 

technology. We use the Hadoop-2.6.0 and Hbase-

0.98.9 for our system. The System is configured with 

4 GB memory and 500 GB storage. Hadoop is an 

open source Java based implementation which allows 

the distributed processing of large scale datasets. 

 The triples for the experiment are taken 

from linked open vocabularies [19]. The geography 

dataset OWL file is converted to the triples format. It 

results into 16776 triples. The main core of the IOI 

system is to process these triples and derive inference 

from a set of MapReduce programs which are written 

by the algorithms described in this paper. The 

Hadoop platform supports the HBase [20] for storage 

of input and intermediate processing of the triples. 

To efficiently compress the input triple 

elements Hash Coding is done initially to perform the 

reasoning. Then prior reasoning over OWL elements 

is done to gather the newly reasoned triples which 

can be given as input to the next step of IOI. To 

construct the FC, the matched triples which can be 

given as input to the creation process are collected in 

the Map function and it is emitted to the Reduce 

function. In Reduce the actual construction process is 

carried out. Since programs are split and executed 

this performance efficiency is helpful in 

implementing the FC construction. After performing 

the FC and reasoning process, the result of triples 

count is 31074. Then ES is computed to reduce the 

AT storage that can be inferred from other triples. 

This resulted in a set of triples with the same subject 

and object, but with different predicate list i.e. 

{Si,Oi,P} pattern is 1968 and sets of triples with the 

same subject and a different object list, i.e.{Si,<Oi>} 

pattern is 2106. Thus storage space is largely 

reduced. Finally the result of various query type of 

user is retrieved from the FC and ES efficiently. This 

reduces the query processing time. 

We compare our reasoning result with the 

IDRM [17] implemented by Bo Liu et al., and 

analyze the result. The result of analysis in Table 1 

shows that IOI reasons out more number of triples 

when compared with IDRM. For IDRM reasons only 

the RDF property, class, domain and range elements. 

But IOI also infers the three OWL elements such as 

union, intersection and inverse which again results in 

the RDFS elements like subClassOf, domain and 

range. These inferred triples were also considered in 

constructing the FC and ES. Hence IOI based 

reasoning provides better results of nodes in the CFC 

and DRFC. This helps in answering the user query 

with more reasoning ability of IOI. 

Table1. Comparison Result 

Geography OWL 

dataset 
IDRM IOI 

Number of Triples 

with ‘subClassOf’ 

predicate 

3941 6345 

Number of Triples 

with ‘domain/range’ 

predicate 

1904 2884 

Node Count in CFC 3794 4037 

Node Count in DRFC 1470 1582 

Triples after 

reasoning 
14644 31074 

Set of triples with 

{Si,Oi,P} pattern 
1251 1968 

Set of triples with 

{Si,<Oi>} pattern 
1519 2106 

 

V. CONCLUSION AND FUTUREWORK 

In this paper, reasoning over the semantic 

data is performed. Large volume of data makes the 

reasoning process a challenging one. To avoid the 

complexity of reasoning, IOI method is proposed. 

The experiment is conducted using both IOI and 

IDRM [17]. The results show that IOI infers more 

number of triples than other reasoning methods 

comparatively because it infers the set and inverse 

elements also. In future, the method can be enhanced 

with more properties of OWL other than that 

considered here. Also the efficiency of the results 

obtained by the user query can be further improved.  
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