
© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 109

INCREMENTAL ONTOLOGY INFERENCE FOR

SEMANTIC WEB BASED ON MAPREDUCE

APPROACH

T. Revathi1, U. Uma Devi2
1Senior Professor& Head, Dept of IT, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

2PG Scholar, Dept of IT, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

Abstract — In the fast growing internet world, web

content increase day by day. This demands the

knowledge searching and reasoning in this big data. The

knowledge is represented in the semantic web using web

ontology languages. Existing methods take long time to

derive inferences and also it performs full reasoning

when new data stream arrives. In this paper an

Incremental Ontology Inference (IOI) Method for

handling large number of triples (subject, predicate,

and object) is proposed. In IOI, the triples for each type

are collected and a forest like data structure is built and

then performs reasoning. The storage requirement is

also reduced by merging the triple reasoned from other

triple into a set of triples with the same values. Hence, it

provides fast traversal of triples in the tree and

retrieves the query results efficiently. MapReduce

paradigm is used to implement the proposed approach.

The results for user query are reasoned and retrieved

effectively.

Index Terms— Big data, Knowledge Searching,

MapReduce, Ontology Inference, Semantic Web.

I. INTRODUCTION

Currently, the web is the major source of

giant data. Every day the flow of data increases at the

web. This makes the challenge of identifying the

useful things from the available data. The normal

human effort is not enough to infer knowledge from

such rich web resource. The Machine should also be

having the knowledge to understand this data deluge

and reason information. Semantic web [1] helps in

making the machines realize the web. The resources

on the web are expressed with the web ontology

language, and this aid computer to identify the

essential information from this current web. The

major application of semantic web includes

healthcare and life sciences [2], machine intelligence

[3], and e-marketplace activities [4].

 The statistics [5] shows that the size of the

semantic web is approximately to contain 4.4 billion

triples in 2009 and it is currently 20 billion triples. Its

development rate is still increasing. Hence, this

creates the problem of knowledge hunting over such

big data.

Obtaining inference from incremental web

resource faces three challenges: 1) Infer knowledge

from correct triple is difficult due to its dispersed

data; 2) Increasing Volume of data needs to be

processed in a scalable manner; 3) Satisfying user

query desires high-speed processing.

The fundamental description of information

on the web is the Resource Description Framework

(RDF) [6]. It is vital for the semantic web. Every

statement on the web is symbolized to a triple. It

expresses the relationship between the two resources.

For example, Fig. 1 shows one way of representing

the statement, "India is a country" in RDF is as the

triple: "India" is the subject, "rdf:type" is the

predicate, and "Country" is the object.

Fig.1 Representation Of Triple

RDF Schema (RDFS) provides vocabulary

for describing how properties and classes are

intended to be used together in RDF data. The Web

Ontology Language (OWL) [7] extends RDF and

RDFS. Its major intention is to bring the expressive

and reasoning power of description logic to the

semantic web.OWL consists of three languages with

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 110

increasing expressivity: OWL Lite, OWL DL and

OWL Full. All the three languages allow us to

describe classes, properties, and instances. The

weaker languages have limitations on what can be

declared or how it may be declared. The Inference is

derived from this knowledge represented in the form

of triples. Some triples in groups with others can

provide new inference. This is done through the set

of policies. Machines uses this policy set to derive

the inference from the available triples.

II. LITERATURE REVIEW

These days reasoning semantic web have

received much attention from both academic world

and the business world. Lots of reasoning engines

have been developed to hold the reasoning over

semantic web.

Guo et al., [4] proposed a novel RuleXPM

(Rule XML Product Map) method that infers the next

generation electronic marketplace (e-marketplace)

activities. The RuleXPM architecture supports the

concept separation strategy and makes the designed

RuleXPM inference engine generic and suitable for

use in all types of e-marketplace. In this architecture,

the inference engine is modular, i.e., each inference

module is independent and reusable and the data in

use can be dynamically generated, and is contextual.

Anagnostopoulos and Hadjiefthymiades [8],

proposed fuzzy inference engines based on the

knowledge-representation (KR) model to enhance the

context inference. The capability of a context aware

system is to classify context and infer specific

situations can be facilitated by proper KR models. A

Fuzzy set based model can accommodate the

vagueness inherent in context capturing. A fuzzy set

is used for representing imprecise context in a human

understandable form. This methodology is generic

and can be applied to different inference schemes in

order to improve the inference capability of the

classifier and deal with mutual exclusion inference.

This model generates specific complementary fuzzy

rules used for increasing the accuracy of the

classification procedure for the well specified

information in Semantic web. Applications can

handle context as flexibly as their users would expect

by using this method, but it is not suitable for all

situations of the user.

Paulheim and Bizer, [9] studied the problem

of inference with noisy data and presented the

SDType method based on the statistical distribution

of types in RDF datasets to deal with noisy data.

Milea et al., [10] presented a temporal extension of

the OWL for expressing time-dependent information.

These ontology-reasoning methods are conducted on

a single machine or local cluster. The reasoning

speed is directly dependent on the scale of the

ontology, which is not suitable for a large ontology

base.

To deal with a large base, some researchers

moved to distributed reasoning methods. Weaver and

Hendler, [11] presented a method for materializing

the complete finite RDFS closure. It is the first

method to provide RDFS inference on such large data

sets in such low times and scalable manner. This

maintains soundness and completeness without

requiring any cumbersome preparation of the data.

This method increases the processing speed by means

of parallel inference. It lacks with scalability and

expressivity. Urbani et al., [12] proposed a scalable

distributed reasoning method by some nontrivial

optimisations for encoding the RDFS ruleset in

MapReduce and exploited the MapReduce

framework for efficient large-scale Semantic Web

reasoning and implements on the top of Hadoop. This

reasoning technique performs quick reasoning using

Hadoop Distributed File System (HDFS) and high

data correlation. The drawback of using this method

is it does not focus on quality of reasoning. Schlicht

and Stuckenschmidt, [13] highlighted the drawback

of the MapReduce-based reasoning and then

introduced a Mapresolve method for more expressive

logics. It adapts the standard method for distributed

resolution that avoids repetition of resolved

inferences. For the limited expressivity of RDFS, the

repetition can be avoided because every MapReduce

job is executed only once Dean and Ghemawat, [14].

For each step, the clause sets are parsed and written

to disc, generates needless overhead.

 Still, these techniques don’t consider the

effect of incremental data volume, and does not show

the processing of users’ queries. To answer the

demands on a user query, they need to obtain the

entire RDF closure by reasoning and save them to

hard disk. The data volume of RDF closure is

ordinarily larger than original RDF data. The storage

of RDF closure is thus not a small amount and the

query on it takes nontrivial time. Furthermore, as the

data volume increases and the ontology base is

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 111

updated, these methods require the re-computation of

the entire RDF closure every time when new data

arrive. To avoid such time-consuming process,

incremental reasoning techniques are proposed.

 Urbani et al., [15] proposed a scalable

parallel inference using MapReduce. This method

calculates the RDF closure for large scale RDF

dataset by adopting algorithms to process the

statements based on input data as incremental

reasoning. This technique identifies the accurate

status, which either existing or newer one does not

provide the relationship between the newly arrived

and existing data. Grau et al., presented an

incremental reasoning approach based on modules

that can reuse the information obtained from the

previous versions of ontology [16]. This method is

used for OWL reasoning speed is a huge problem

while using this method.

 Bo Liu et al., proposed an Incremental and

Distributed inference method based on Mapreduce

and Hadoop [17]. This method speeds up the

updating process with newly arrived data and fulfills

the requirements of end users for online queries that

leverage the old and new data to minimize the

updating time and reduce the reasoning time when

facing big RDF datasets. Though this inference

method speeds up the updating and reasoning, it

concentrates only on the RDF and does not consider

other web definition languages like OWL.

In this paper, we propose an IOI method that

reasons out from the ontology describing web

contents considering the OWL set operator elements,

Inverse element and RDFS elements. To make the

reasoning in the faster way Hadoop framework [18]

can well control over the existing and newly derived

triples. This reduces the inference time issues faced

by large web contents.

III. ONTOLOGY INFERENCE BASED ON OWL

AND RDF ELEMENTS

This section presents the IOI over large

scale web contents described with web ontology

description languages include RDF and OWL. Fig. 2

shows the architectural layout for the inference,

presenting the steps involved in the ontology

reasoning.

The input to the IOI method is in the form of

triples. The URLs in the triple are encoded with the

corresponding hash code initially. Then OWL+RDF

reasoning step process the encoded triples and obtain

new reasoned triple incrementally. After that Forest

Creation (FC)/Effective storage (ES) modules are

performed to construct tree based storage of triples.

The query processing step takes the user’s query and

answers them with results obtained after reasoning.

A. Hash Coding

The web page contains many statements and

they are represented in the semantic web as the

sequence of long URIs to uniquely identify each web

resource. This makes the processing and reasoning

over the URIs complexity. To solve this issue, the

hash code for each URI in the triple is generated. A

unique numeric identifier is assigned to each one of

them.

Fig. 2 Incremental Ontology Inference

Triple file is given as the input to the MapReduce

Program. It splits the triples into <subject, predicate,

object> line by line in the map function. Then the

reduce function calculates the hash code for each

unique URI emitted from the map.

 The steps after calculating the hash code are

all based on only with the encoded triple format

obtained from hash coding to reduce the storage and

to speed up the upcoming inference process.

B. Prior Reasoning with OWL Elements

 The main inference exists in the triples

having the predicate as property and class. Therefore,

before reasoning out from the RDF elements like

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 112

rdfs:subProperty, rdfs:subClassOf, rdfs:domain, and

rdfs:range, we have to reason out of the OWL

elements. Because the triples infers from

owl:unionOf, owl:intersectionOf, and owl:inverseOf

can also trigger other inference of class, domain, and

range. Therefore, prior reasoning with OWL

elements is done to make the reasoning process

better.

 Two reasoning steps consider here are

reasoning from Set Operators and Inverse. OWL

supports set operators like union and intersection

elements. Algorithm 1 shows the reasoning over set

operator and Algorithm 2 shows the reasoning over

Inverse element.

Algorithm 1 - Reasoning over Set operator

Input: All Triples T with predicate owl:unionOf and

owl:intersectionof

{

for each triple t <s,p,o> in T

 if p is owl:unionOf

 add triple <o,rdfs:subClassOf,s>to R

 if p is owl:intersectionOf

 add triple <s,rdfs:subClassOf,o>to R

return R

}

Output: Reasoned rdfs:subClassOf Triples R

Algorithm 2 - Reasoning over Inverse

Input: All triples T having predicate as

owl:inverseOf

{

for each triple t<s,p,o> in T

 if p is owl:inverseOf

 for each triple t in T

 if <s,rdfs:domain,o1> exists in T

 add triple <o, rdfs:domain, o1> to R

 if <s,rdfs:range,o1> exists in T

 add triple <o, rdfs:range, o1> to R

return R

}

Output: Reasoned rdfs:domain & rdfs:range triples

R

The owl:unionOf property relates a class to

a set of class descriptions. The inference exist with

this is, if a class X is the owl:unionOf a set of classes,

say A, B, and C, then each of A, B, and C, is

rdfs:subClassOf X. For example SweetFruit and

NonSweetFruit are the unionOf the Fruit class, then

we can infer that both SweetFruit and NonSweetFruit

are the rdfs:subClassOf the class Fruit.

Similar to the owl:unionOf property

owl:intersectionOf also relates a class to a set of class

descriptions. The inference exist with this is, if a

class X is the owl:intersectionOf a list of classes, say

A, B, and C, then X is rdfs:subClassOf of each of

A,B, and C. For example, if WhiteWine is exactly the

intersection of the class Wine and the set of things

that are white in color, then we can infer that

WhiteWine is an rdfs:subClassOf Wine.

Properties always have a direction, from

domain to range. It is difficult to define relations in

both directions: persons own cars, cars are owned by

persons. The owl:inverseOf construct can be used to

define such an inverse relation between properties.

The inference exist here is, If A is owl:inverseOf B

and A domain is U Then B domain U can be

inferred, and similarly if A range is U Then B range

is also U.

C. Forest Creation

In order to efficiently handle the inference

and avoid the searching over entire ontology base the

forest data structure is maintained. The forest may

consist of one or multiple trees. The tree gets updated

when incremental triples occur. Each node in a tree

stands for a subject or object, and the directed link

between them shows their sub-property relation. FC

is further divided into Property FC (PFC), Class FC

(CFC), and Domain/Range FC (DRFC).

PFC is a directed forest constructed based

on all the triples that have predicate

rdfs:subPropertyOf, or have predicate rdf:type and

object rdfs:ContainerMembershipProperty. Fig. 3

shows the PFC Creation, In this ‘hasSon’ is the

rdfs:subPropertyOf ‘hasChild’. So the directed graph

from ‘hasSon’ to ‘hasChild’ is drawn. Similarly for

all the triples with predicate

rdfs:subPropertyOf(RPO) is drawn.

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 113

Fig. 3 PFC Creation

CFC is a directed forest constructed based

on all the triples that have predicate rdfs:subClassOf,

or have predicate rdf:type and object rdfs:Datatype or

rdfs:Class. Each node in a tree stands for a subject or

object, and the directed link between them shows

their sub-class relation. Fig. 4 shows the CFC

Creation, In this ‘Europe’ is the rdfs:subClassOf

‘Country’. So the directed graph from ‘Europe’ to

‘Country’ is drawn. Similarly for all the triples with

predicate rdfs:subClassOf (SCO) is drawn.

Fig. 4 CFC Creation

DRFC is a directed forest constructed based

on the triples that have predicates rdfs:domain or

rdfs:range, in which each node in the tree stands for a

subject or object and the directed link shows the

domain or range relation between the node pair. Fig.

5 shows the DRFC Creation, In this ‘NorthCorner’

has the rdfs:range as ‘Location’. So the directed

graph from ‘NorthCorner’ to ‘Location’ is drawn. To

differentiate the rdfs:domain (R) and rdfs:range (D) is

marked with the dotted line and dark line

respectively. Similarly for all the triples with

predicate rdfs:range and rdfs:domain are drawn.

Fig. 5 DRFC Creation

D. Reasoning over FC

The next thing after FC is to perform

reasoning. Since FC contains set of trees, Traversing

in the tree is by two ways, either in the forward or

reverse direction of the tree. If we start from root or

endpoint to search node, then it is called “forward

path” otherwise if we traverse from search node to

the root or endpoint then it is called “reverse path”.

 Reasoning FC is also done in three ways

similar to the creation process. An Algorithm 3, 4,

and 5 shows the Reasoning over PFC, CFC, and

DRFC respectively. The input to the Algorithm is

Assertional Triples (AT). AT is a triple not having

the predicate as subProperty, subClassOf, domain

and range.

Fig. 6 Reasoning Of PFC

Algorithm 3 describes that for the given AT

if its predicate exists in the PFC then new triple be

generated. Fig. 6 shows the example for reasoning

hasChild

fatherOf

parentOf

hasSon SPO

hasChild

hasChild SPO

fatherOf

fatherOf SPO

parentOf

Europe SCO

Country

Country SCO

GeoEntity

River SCO

waterbody

Europe

Country

GeoEntity

River

Water

Body

NorthCorner

R Location

hasLocation D

Location

hasArea D

Location

hasLocation

Location

NorthCorne

r

hasArea

John

hasSon

James

John hasChild James

John fatherOf James

John parentOf James

hasSon

hasChild

fatherOf

parentOf

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 114

over PFC. Given the triple <john hasSon james>, the

predicate hasSon exist in the PFC. Therefore, traverse

through the forward path of PFC. The path is

hasChild fatherOf parentOf. Then for each node

in the forward path generate the triple by replacing

the predicate with that node. Thus the final results are

{<John hasChild James>, <John fatherOf James>,

<John ParentOf James>}.

Algorithm 3 - Reasoning over PFC

Input: All AT and PFC

{

for each node p in PFC

 F<- forward path of p

 for each node f in F

 add triple t <s,p,o> to R

return R

}

Output: Reasoned triple R

Algorithm 4 describes that for the given AT

and the DRFC, new triples can be reasoned. For the

given triple, if its predicate is rdfs:domain and object

‘o’ exist in the DRFC then new triple be generated.

Similarly, if its predicate is rdfs:range and subject ‘s’

exists in the DRFC then new triple be generated.

Reasoning over DRFC is done prior to the CFC since

it infers triples that trigger the reasoning of CFC.

Algorithm 4 - Reasoning over DRFC

Input: All AT and DRFC

{

for each node p in DRFC

 if p has a domain edge linked to node c

 add triple <s,rdf:type,c> to R

 if p has a range edge linked to node c

 add triple <o,rdf:type,c> to R

return R

}

Output: Reasoned triples R that triggers CFC

Inference

Algorithm 5 describes that for the given AT

if its predicate is rdf:type and object o exist in the

CFC then new triple be generated. Fig. 7 shows the

example for reasoning over CFC. Given the triple

<Austria rdf:type Europe>, the object Europe exist in

the CFC. Therefore, traverse through the forward

path of CFC. The forward path is EuropeCountry

 Geographic Entity. Then for each node in the

forward path generate the triple by replacing the

object with that node. Thus the final results are

{<Austria rdf:type Country> , <Austria rdf:type Geo

Entity> }.

Fig.7 Reasoning CFC

Algorithm 5 - Reasoning over CFC

Input: All AT and CFC

{

for each node o in CFC

 F <-- forward path of o

 for each node f in F

 add triple t<s,rdf:type,f> to R

return R

}

Output: Reasoned rdf:type triples R

E. ES Making

 The AT we obtained from reasoning can be

derived from others, so we can avoid storing all of

them to make the storage efficient. For example,

given two triples AT1: <s1, hasSon, o1> and AT2:

<s1, fatherOf, o1> and the PFC in the derived triples

for T1 are <s1, hasSon, o1>, <s1, hasChild,o1>,

<s1, fatherOf, o1>, and <s1, parentOf, o1>, and

those for T2 are <s1, fatherOf, o1> and <s1,

parentOf, o1> which are all duplicated ones.

 ES reduce the storage of AT that can be

inferred from others. It is subdivided into two types

according to FC as Property Effective Storage (PES)

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 115

and Class Effective Storage (CES). The information

that cannot be derived is alone stored in ES.

 PES concentrate on the AT that is having the

same subject and object, but the predicates are

different for each of AT. Similarly CES concentrate

on the AT that is having the same subject and the

predicate should be of rdf:type, but the object field of

AT is different for each of them. Algorithm 6 and 7

are aimed to build PES and CES respectively.

The complexity of Algorithm 6 and 7 is O(mn) where

‘m’ represents the number of triples in T and ‘n’

represents the number of nodes in PFC/CFC.

Algorithm 6 - Making PES

Input: PFC and a set of triples that have the same

subject and object T = {<𝑆𝑖, 𝑃1, 𝑂𝑖>, <𝑆𝑖, 𝑃2, 𝑂𝑖>,. }

{

T {<𝑆𝑖, 𝑃1, 𝑂𝑖>, <𝑆𝑖, 𝑃2, 𝑂𝑖>,. . . }

P = {P1,P2,..} all the predicates in T

for each Pj in P

 Q pj in the forward path of PFC

 for each qi in Q

 if qi exists in P

 Remove qi from P

return PES = {Si ,Oi,P}

}

Output: PES = {𝑆𝑖 ,𝑂𝑖 , <Pi>}

Algorithm 7 - Making CES

Input: CFC and a set of triples that have the same

subject and predicate is rdf:type, T= { <𝑆𝑖, rdf:type,

𝑂1>, <𝑆𝑖, rdf:type, 𝑂2>,… }

{

T {<𝑆𝑖, rdf:type, 𝑂1>, <𝑆𝑖, rdf:type, 𝑂2>,… }

O= {O1, O2...} all the objects in T

for each Oj in O

 Q Oj in the forward path of CFC

 for each 𝐶𝑖 in Q

 if 𝐶𝑖 exists in O

 remove 𝐶𝑖 from O

return CES = {𝑠𝑖,O}

}

Output: CES = {Si,<Oi>}

Fig. 8 Incrementing FC and ES

F. Updating FC and ES

New triples are added to the tree without

reconstructing the full tree. It was done by simply

updating the already existing tree structure. When

new triples arrive, new edges are added to the

existing FC. Now we have two kinds of edges, i.e.,

existing edges referring to the triples that exist in the

original FC, and incremental ones to those who’s

subject or object or both do not exist in the FC.

 Fig. 8 shows the incremental update of FC.

Dark lines shows the already existing edges and

dotted edges represent the incremental edges that are

updated.

The steps for updating the FC and ES are as follows.

1. Generate new PFC by adding new edges to

the existing PFC.

2. Generate incremental PES based on the

input triples, add the incremental PES to the

existing PES, and run Algorithm 6 to

generate new PES.

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 116

3. Generate incremental DRFC based on the

incremental triples and add incremental

DRFC to the existing DRFC.

4. For the PES the predicate is in the reverse

path of the incremental edges though the

forward path of the incremental edge

contains nodes in DRFC, generate the AT

using Algorithm 4.

5. Generate new CFC by adding new edges to

the existing CFC.

6. Generate the incremental CES based on the

incremental AT and the triples generated in

step 4, add the incremental CES to the

existing CES, and run Algorithm 7 to make

new CES.

G. Query Retrieval

The main goal of Calculating FC and ES is

to reduce the query time. In order to search the node

in the tree, traversing is possible in three ways. They

are Forward, Backward, and Reachable node search.

Based on these ways there exist six methods to

retrieve the query result.

Method 1: Input: <subject, object> pair, Output:

predicate list

 Search for <subject, object> pair in the PES and

obtain the predicate list Pi. Here i is the count of

different predicate obtained. Check for all the

predicate values of i in the PFC and emit the list of

nodes that are available in the forward path.

Method 2: Input: <subject>and predicate <rdf:type>,

Output: object list

 Search <subject> in the CES and obtain the

object list Oi . Here i is the count of different objects

obtained. Check for all the subject values of i in the

CFC and emit the list of nodes that are available in

the forward path.

Method 3: Input: <predicate>, Output: <subject,

object> pair

 Search for the <predicate> in the reverse path of

the PFC and obtain the list of nodes Pi in that path.

Here i is the count of different predicate obtained.

Check for all predicate values of i in the PES and

emit the <subject, object> pair.

Method 4: Input: predicate <rdf:type> and <object>,

Output: <subject>

 Search for the <object> in the reverse path of the

CFC and obtain the list of nodes Oi in that path. Here

i is the count of different objects obtained. Check for

all object values of i in the CES and emit the

<subject>.

Method 5: Input: <subject> and predicate

<rdfs:subPropertyOf>, Output: object list

 Search for the <subject> in the PFC. If exists in

the tree, then emit all the nodes in the forward path.

Method 6: Input: <subject> and predicate

<rdfs:subClassOf>, Output: object list

 Search for the <subject> in the CFC. If exists in

the tree, then emit all the nodes in the forward path.

Basically eight types of query statements,

including <?x ?y ?z>, <?x p ?z>, <s ?y ?z>, <?x ?y

o>, <?x p o>, <s p ?z>, <s ?y o>, and <s p o> are

available. For each type the procedure to execute the

query is as follows.

1) <?x ?y ?z>:Get all the <subject,object>

pairs in the PES. Give them as input to

Method1. Get the entire <subject> from

CES and give them as input to Method 2.

Output the entire result obtains from both

the methods.

2) <?x p ?z >:If ‘p’ is rdf:type then give it as

input to method 2. If ‘p’ is

rdfs:subpropertyOf then give it as input to

method 5. If ‘p’ is rdfs:subClassOf then give

it as input to method 6. Otherwise if ‘p’

doesn’t satisfy any of the above if condition

then gives the ‘p’ as the input to method 3. It

outputs all the <?x ?z> pairs as the result.

3) <s ?y o>:Give <s,o> as input to method1

and emit the predicate result. Also give the

<o> as input to method 4, if‘s’ exist in the

result, then predicate <rdf: type> is also

emitted as output.

4) < s ?y ?z>:Get all the <subject, object>pair

in PES for the ‘s’. Then execute the query

type 3 for the obtained <subject,object>pair.

Also check whether‘s’ exists in CES and

obtain the object list ‘O’ by running method

2. Emit the result as <s rdf:type O>.

5) <?x ?y o>: Get all the <subject,object> pair

in PES with ‘o’. Then execute the query

type 3 for the obtained <subject,object>pair.

Also check whether ‘o’ exists in CES and

obtain the subject list S by running the

method 4. Emit the result as <S rdf:type o>.

6) <?x p o>:Execute the query type 2 and filter

the result based on ‘o’.

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 117

7) <s p ?z>:Execute the query type 2 and filter

the result based on ‘s’.

8) <s p o>:Execute the query type 2 and filter

the result with both ‘s’ and ‘o’.

If for all the query type there is no result

obtained means, then return empty to the user.

IV. RESULTS & ANALYSIS

To implement the proposed approach, Hadoop

framework is used which enable the MapReduce

technology. We use the Hadoop-2.6.0 and Hbase-

0.98.9 for our system. The System is configured with

4 GB memory and 500 GB storage. Hadoop is an

open source Java based implementation which allows

the distributed processing of large scale datasets.

 The triples for the experiment are taken

from linked open vocabularies [19]. The geography

dataset OWL file is converted to the triples format. It

results into 16776 triples. The main core of the IOI

system is to process these triples and derive inference

from a set of MapReduce programs which are written

by the algorithms described in this paper. The

Hadoop platform supports the HBase [20] for storage

of input and intermediate processing of the triples.

To efficiently compress the input triple

elements Hash Coding is done initially to perform the

reasoning. Then prior reasoning over OWL elements

is done to gather the newly reasoned triples which

can be given as input to the next step of IOI. To

construct the FC, the matched triples which can be

given as input to the creation process are collected in

the Map function and it is emitted to the Reduce

function. In Reduce the actual construction process is

carried out. Since programs are split and executed

this performance efficiency is helpful in

implementing the FC construction. After performing

the FC and reasoning process, the result of triples

count is 31074. Then ES is computed to reduce the

AT storage that can be inferred from other triples.

This resulted in a set of triples with the same subject

and object, but with different predicate list i.e.

{Si,Oi,P} pattern is 1968 and sets of triples with the

same subject and a different object list, i.e.{Si,<Oi>}

pattern is 2106. Thus storage space is largely

reduced. Finally the result of various query type of

user is retrieved from the FC and ES efficiently. This

reduces the query processing time.

We compare our reasoning result with the

IDRM [17] implemented by Bo Liu et al., and

analyze the result. The result of analysis in Table 1

shows that IOI reasons out more number of triples

when compared with IDRM. For IDRM reasons only

the RDF property, class, domain and range elements.

But IOI also infers the three OWL elements such as

union, intersection and inverse which again results in

the RDFS elements like subClassOf, domain and

range. These inferred triples were also considered in

constructing the FC and ES. Hence IOI based

reasoning provides better results of nodes in the CFC

and DRFC. This helps in answering the user query

with more reasoning ability of IOI.

Table1. Comparison Result

Geography OWL

dataset
IDRM IOI

Number of Triples

with ‘subClassOf’

predicate

3941 6345

Number of Triples

with ‘domain/range’

predicate

1904 2884

Node Count in CFC 3794 4037

Node Count in DRFC 1470 1582

Triples after

reasoning
14644 31074

Set of triples with

{Si,Oi,P} pattern
1251 1968

Set of triples with

{Si,<Oi>} pattern
1519 2106

V. CONCLUSION AND FUTUREWORK

In this paper, reasoning over the semantic

data is performed. Large volume of data makes the

reasoning process a challenging one. To avoid the

complexity of reasoning, IOI method is proposed.

The experiment is conducted using both IOI and

IDRM [17]. The results show that IOI infers more

number of triples than other reasoning methods

comparatively because it infers the set and inverse

elements also. In future, the method can be enhanced

with more properties of OWL other than that

considered here. Also the efficiency of the results

obtained by the user query can be further improved.

© February 2017 | IJIRT | Volume 3 Issue 9 | ISSN: 2349-6002

IJIRT 144262 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 118

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The

semantic web. Scientific American,284(5):34-43,

2001.

[2] M. S. Marshall et al., “Emerging practices for

mapping and linking life sciences data using

RDF—A case series,” J. Web Semantics, vol. 14, pp.

2–13, Jul. 2012.

[3] M. Nagy and M. Vargas-Vera, “Multiagent

ontology mapping framework for the Semantic

Web,” IEEE Trans. Syst., Man, Cybern. A,

Syst.,Humans, vol. 41, no. 4, pp. 693–704,

Jul.2011.

[4] J. Guo, L. Xu, Z. Gong, C.-P. Che, and S. S.

Chaudhry, “Semantic inference on heterogeneous e-

marketplace activities,” IEEE Trans. Syst.,Man,

Cybern. A, Syst., Humans, vol. 42, no. 2, pp. 316–

330, Mar. 2012.

[5] Linking Open Data on the Semantic Web

[Online].Available:

http://www.w3.org/wiki/TaskForces/CommunityProj

ects/LinkingOpenData/DataSets/Statistics

[6]P.Hayes,(ed.) RDF Semantics. W3C

Recommendation, 2004.

[7] P. Patel-Schneider, P. Hayes, and I. P. Horrocks,

“Web Ontology Language (OWL) abstract

syntax and semantics,” W3C Recommendation,2004.

[8] C. Anagnostopoulos and S. Hadjiefthymiades,

“Advanced inference in situation-aware Sep.

computing,” IEEE Trans. Syst., Man, Cybern. A,

Syst.,Humans, vol. 39, no. 5, pp. 1108–

1115,2009.

[9] H. Paulheim and C. Bizer, “Type inference on

noisy RDF data,” in Proc.ISWC, Sydney, NSW,

Australia, 2013, pp. 510–525.

[10] V. Milea, F. Frasincar, and U. Kaymak, “tOWL:

A temporal web ontology language,” IEEE

Trans. Syst., Man, Cybern. B, Cybern., vol. 42,no. 1,

pp. 268–281, Feb. 2012.

[11] J. Weaver and J. Hendler, “Parallel

materialization of the finite RDFS closure for

hundreds of millions of triples,” in Proc. ISWC,

Chantilly, VA, USA, 2009, pp. 682–697.

[12] J. Urbani, S. Kotoulas, E. Oren, and F.

Harmelen, “Scalable distributed reasoning using

mapreduce,” in Proc. 8th Int. Semantic Web Conf.,

Chantilly, VA, USA, Oct. 2009, pp. 634–649.

[13] A. Schlicht and H. Stuckenschmidt,

“MapResolve,” in Proc. 5th Int. Conf. RR, Galway,

Ireland, Aug. 2011, pp. 294–299.

[14] J. Dean and S. Ghemawat, “MapReduce:

Simplified data processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[15] J. Urbani, S. Kotoulas, J. Maassen, F. V.

Harmelen, and H. Bal, “WebPIE: A web-scale

parallel inference engine using mapreduce,” J. Web

Semantics, vol. 10, pp. 59–75, Jan. 2012.

[16] B. C. Grau, C. Halaschek-Wiener, and Y.

Kazakov, “History matters: Incremental ontology

reasoning using modules,” in Proc.

ISWC/ASWC,Busan, Korea, 2007, pp. 183–196.

[17] Bo Liu, Member, IEEE, Keman Huang,

Jianqiang Li, and MengChu Zhou, “An Incremental

and Distributed Inference Method for Large-Scale

Ontologies Based on Mapreduce Paradigm, IEEE

Trans. on cybernetics, vol. 45, no. 1, january 2015

[18] Hadoop [online], Available:

https://hadoop.apache.org/

[19] Linked Open Vocabulary [online], Available:

http://lov.okfn.org/dataset/lov/vocabs/

[20] HBase [online], Available:

https://hbase.apache.org/

