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Abstract- The brain is a highly complex biological 

system. The study of complex systems requires the use 

of analytical tools which can detect statistical 

dependencies between time series recorded from the 

interacting subsystems. This work aims to study various 

signal processing methods to determine the functional 

connectivity in the brain using multichannel EEG 

signals. The functional connectivity is analyzed using 

linear and non linear techniques with correlation and 

synchronization Likelihood. Functional connection is 

obtained by computing the correlation among multi 

channel EEG data by applying different threshold. 

Coherency of EEG is sensitive only to linear and 

symmetric interdependencies and cannot deal with non-

stationarity. The approach is based upon the theory of 

nonlinear dynamical systems. This discusses the 

Synchronization Likelihood, a multivariate nonlinear 

technique which measures synchronization between 

different brain sites. 

Index Terms- Synchronization Likelihood, Non-linear, 

Dynamical System 

I. INTRODUCTION 

Functional connectivity is a measure of how 

regions of the brain interact with each other. Brain 

functional connectivity evaluates the statistical 

dependencies between spatially distributed brain 

regions. A central problem in the study of normal and 

disturbed brain function is the question how 

functional interactions take place between different 

specialized networks. Understanding the coordination 

between brain regions is important in the context of 

information processing in the healthy brain but also 

in the case of neurological disease. Loss of neurons 

and connecting fibre systems may lead to diminished 

interactions and cognitive dysfunction. Usually, 

functional interactions are studied by considering 

time series of electrical potentials 

(electroencephalogram (EEG)) or magnetic field 

strengths (Magnetoencephalogram (MEG)) recorded 

from different brain areas. Similarities between these 

time series are taken to reflect functional influences 

between the neuronal networks generating the time 

series. Similarities between time series are commonly 

quantified with linear techniques, in particular 

estimates of the coherency, which is a normalized 

measure of linear correlation as a function of 

frequency only sensitive to linear and symmetric 

interdependencies and cannot deal with non- 

stationary. 

Recently, several algorithms based upon the 

concept of generalized synchronization have been 

introduced to overcome some of the limitations of 

coherency estimates. Similarities between these time 

series are taken to reflect functional influences 

between the neuronal networks generating the time 

series. Similarities between time series are commonly 

quantified with linear techniques, in particular 

estimates of the coherency, which is a normalized 

measure of linear correlation as a function of 

frequency. To this end we can apply coherence 

function, which is based on Fourier transform. Word 

“coherence” is from the Latin word cohaerentia– it 

means natural or logical connection or consistency. 

The coherence function allows us to find common 

frequencies and to evaluate the similarity of signals. 

However, it does not give any information about 

time. There are two often used methods to calculate 

the coherence function: Welch method and MVDR 

(Minimum Variance Distortion less Response) 

method. A transformation T is said to be linear if 

applied to linear combination of signals ax+by gives 

linear combination of results aT(x)+bT(y). Coherence 



© May 2017 | IJIRT | Volume 3 Issue 12 | ISSN: 2349-6002 

IJIRT 144538 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 157 

 

function is based on Fourier transform, which is a 

linear transformation.  

 

The Coherence function is defined as  

 

Cxy(w)=                (1) 

Where Pxx and Pyy are power spectra of 

signals x and y ,Pxy is cross-power spectrum for these 

signals, ω is frequency. In case, when Pxx(ω) = 0 or 

Pyy (ω) = 0, then also Pxy(ω) = 0 and we assume, that 

value Cxy(ω) is zero. The power spectrum (also called 

periodogram) and cross-power spectrum is defined as 

the Fourier transform. It yields the information about 

frequencies occurring in signals and the dominant 

frequency for these signals. 

 First coherency estimates are not suitable to 

characterize non-stationary data with rapidly 

changing interdependencies. Possibly, modifications 

such as event-related coherence can overcome this 

limitation. Coherency only captures linear relations 

between time series, and may fail to detect non-linear 

interdependencies between the underlying dynamical 

systems. 

Recently a variety of methods have been 

proposed to detect more general types of interactions 

between dynamical systems. Here, the instantaneous 

phase of both time series is computed, and 

interactions are quantified in terms of time-

dependent. 

II. CORRELATION 

Similarities between time series are 

commonly quantified with linear techniques, in 

particular estimates of the coherency, which is a 

normalized measure of linear temporal correlation as 

a function of   frequency. The functional connectivity 

refers to the pattern of temporal correlations (or, 

more generally, deviations from statistical 

independence) that exists between distinct neuronal 

units. Such temporal correlations are often the result 

of neuronal interactions along anatomical or 

structural connections; in some cases observed 

correlations may be due to common input from an 

external neuronal or stimulus source. Deviations from 

statistical independence between neuronal elements 

are commonly captured in a correlation matrix under 

certain statistical assumptions, may be viewed as a 

representation of the system’s functional 

connectivity. Although temporal correlations are 

perhaps most often used to represent statistical 

patterns in neuronal networks, other measures such as 

spectral coherence or consistency in relative phase 

relationships may also serve as indicators of 

functional connectivity. The relationship between 

structural and functional dimensions of brain 

connectivity is mutual and   reciprocal. In the other 

direction, functional interactions can contribute to the 

shaping of the underlying anatomical substrate. This 

is accomplished either directly through activity 

(correlation) dependent synaptic modification, or, 

over longer time scales, through effects of functional 

connectivity on an organism’s perceptual, cognitive 

or behavioral capabilities, which in turn affect 

adaptation and survival. The reciprocity between 

anatomical and functional networks deserves 

emphasis as it captures some of the unique aspects of 

brain networks.  

The brain is inherently a dynamic system, in 

which the traffic between regions, during behavior or 

even at rest, creates and reshapes continuously 

complex functional networks of correlated dynamics. 

The important goal in neuroscience is to understand 

these spatiotemporal patterns of brain activity. Two 

brain sites are said to be functionally connected if 

their temporal correlation exceeds a positive 

predetermined value rc, regardless of their anatomical 

connectivity []. The temporal correlation between 

two brain sites x1(t) and x2(t) is defined by the 

mathematical formula [1]   

r(x1,x2)=     (2) 

The resulting Correlation matrix is 

converted to graph by applying a threshold (typically 

ranging between 0.50.8).  

Correlations between all pair wise 

combinations of EEG channels were determined 

using the temporal correlation. The correlation value 

ranges between 0 and 1.The end result of computing 

the correlation for all pair wise combinations of 

channels is a square matrix of size N x N (the number 

of EEG channels), where each entry Ni,j contains the 

value of the correlation for the channels i and j. The 

resulting synchronization matrix is converted to a 

binary graph by applying a threshold, T. If the 
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correlation between a pair of channels i and j exceeds 

T, an edge is said to exist between i and j; otherwise 

no edge exists between i and j.The corresponding 

threshold matrix is called ‘Adjacency matrix’. A 

binary graph is a network that consists of elements 

(also called ‘‘vertices’’) and undirected  connections 

between elements (called ‘‘edges’’) .The correlation 

matrix and it’s corresponding threshold matrix 

computed from N channel EEG data is obtained. The 

binary graph having N vertices/nodes which is 

nothing but the functional network is also generated. 

Degree distribution of Network: The 

‘degree’ of a vertex is defined as the number of edges 

connected to that vertex.  

di={ number of edges connected to that vertex } 

  

Similarly the degree of each vertex is found (degree 

vector)  

d=         (3) 

where N is the no. of vertices, d1,d2,...dN are the 

degrees of the corresponding vertices 1,2,....N. Now 

the degree distribution (PD) is found by computing 

the histogram of the degree vector d. 

PD = hist(d)                (4) 

Average Path length: The ‘path length (L)’ 

between two vertices is defined as the minimum 

number of links/edges required to connect to both 

vertices. The average of all the possible path lengths 

between any two vertices in a graph is defined as the 

‘Average Path Length (Lavg)’. If suppose there are N 

number of vertices in a graph, the of possible ways in 

which two nodes can be picked for finding path is 

nC2.For calculating the Average path length Floyd’s 

Algorithm (Undirected graph) is employed. 

  This algorithm is designed to find the least 

expensive paths between all the vertices in a graph. It 

does this by operating on a matrix representing the 

costs of edges between vertices. Before we invoke 

Floyd's algorithm a matrix must be built, usually in a 

two dimensional array. If there are N vertices in the 

graph, the size of the matrix will be N x N. Each row 

in the matrix represents a "starting" vertex in the 

graph while each column in the matrix represents an 

"ending"  point in the graph [2]. If there is an edge 

between a starting point i and ending point j in the 

graph, the cost of this edge is placed in position (i,j) 

of the matrix. In this analysis all the edges are given 

the same cost equal to unity. If there is no edge 

directly linking two vertices, an infinite (or, in 

practice, very large) value is placed in the (i,j) 

position of the matrix to specify that it is impossible 

to directly move from i to j. 

The clustering coefficient is a measure of 

the local interconnectedness of the graph, whereas 

the path length is an indicator of its overall 

connectedness. The clustering coefficient Ci for a 

vertex vi is the proportion of links between the 

vertices within its neighborhood divided by the 

number of links that could possibly exist between 

them. For an undirected graph the edge eij between 

two nodes i,j is considered identical to eji. Therefore, 

if a vertex vi has ki neighbours, ki(ki1)/2 edges 

could exist among the vertices within the 

neighborhood. Thus, the clustering coefficient for 

undirected graphs can be defined as: 

Ci= : E       (5) 

The clustering coefficient for the whole 

graph is given as the average of the clustering 

coefficient for each vertex:  

        =                     (6) 

While this approach has produced a large 

body of knowledge on normal and pathological brain 

function, it has a number of limitations. 

 First, coherency estimates are not suitable 

to characterize non-stationary data with rapidly 

changing interdependencies. Possibly, modifications 

such as event related coherence can overcome this 

limitation. 

 A more important limitation is that methods 

such as coherency only capture linear relations 

between time series, and may fail to detect nonlinear 

interdependencies between the underlying dynamical 

systems. Recently a variety of methods have been 

proposed to detect more general types of interactions 

between dynamical systems. One line of research is 

based on the analytical signal concept [3]. Here, the 

instantaneous phase of both time series is computed, 

and interactions are quantified in terms of time 

dependent n:m phase locking (n and m being 

integers). This approach has been successful in the 

study of EEG seizure data and in the study of 



© May 2017 | IJIRT | Volume 3 Issue 12 | ISSN: 2349-6002 

IJIRT 144538 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 159 

 

synchronization between muscle and cortical activity 

[4]. However, this approach is only valid when the 

time series are approximately oscillatory. 

III. SYNCHRONIZATION LIKELIHOOD 

Synchronization likelihood (SL) is general 

approach based upon the theory of nonlinear 

dynamical systems is used to determine the 

functional network of brain. The variation of SL with 

coupling strength between identical and nonidentical 

systems, ability of SL to detect nonlinear coupling, 

using multivariate synthetic data, sensitivity of SL to 

time dependence of SL on Pref , noise and 

application to epileptic EEG data, eyes opened and 

eyes closed are studied thoroughly. The first step in 

finding the synchronization likelihood is to obtain the 

embedded vectors using Taken’s theorem. Then the 

correlation integral is evaluated using the embedded 

vectors. The Synchronization Likelihood is obtained 

from correlation Integral. Correlations between all 

pair wise combinations of EEG channels were 

determined with the synchronization likelihood. The 

resulting synchronization matrix is converted to a 

binary graph by applying a threshold, and then the 

cluster coefficients and  path lengths are computed as 

a function of threshold or as a function of degree k. 

The properties of nonlinear technique (SL) are 

studied in detail by first working on the synthetic 

Henon data followed by real EEG data. The variation 

of SL with coupling strength between identical and 

non- identical systems, ability of SL to detect 

nonlinear coupling, using multivariate synthetic data,  

sensitivity of SL to time dependence of SL on Pref , 

noise and application to epileptic EEG data, eyes 

opened and eyes closed are studied thoroughly. All 

this work provides sufficient information for 

analyzing the connectivity of the human brain and we 

have discussed this for case of epileptic seizure and 

also for different states of the subject (relaxed, eyes 

closed and eyes opened). 

Information theoretic approach for studying 

synchronization phenomena in experimental bivariate 

time series is presented. This exists between two 

dynamical systems X and Y when the state of the 

response system Y is a function of the state of the 

driving system X: Y = F(X). When F is continuous, 

and xi , xj are two points on the attractor of X which 

are very close together, then the corresponding points 

yi , yj on Y will also be close together. An important 

feature of generalized synchronization is that the 

corresponding time series need not resemble each 

other. 

Synchronization Likelihood (SL) is one of the 

successful algorithms for analyzing the generalized 

synchronization. It is a straightforward normalized 

estimate of the dynamical interdependencies between 

two or more simultaneously recorded time series. The 

SL ranges between Pref (a small number close to 0) in 

the case of independent time series and 1 in the case 

of maximally synchronous signals. The basic 

principle of the SL is to divide each time series into a 

series of ‘‘patterns’’ (roughly, brief pieces of time 

series containing a few cycles of the dominant 

frequency) and to search for a recurrence of these 

patterns. The SL is then the chance that pattern  

recurrence in one time series coincides with pattern 

recurrence in another time series; Pref is the small but 

nonzero likelihood of coincident pattern recurrence in 

the case of independent time series. This measure can 

also be computed in a time dependent way, making it 

suitable for the analysis of non-stationary data. An 

algorithm for calculating synchronization likelihood 

is explained in the paper [5].An algorithm for the 

determination of synchronization likelihood. 

Forming Embedded vectors: 

Consider an M simultaneously recorded time 

series xk,i , where k denotes channel number (k = 1, . 

. .,M) and i denotes discrete time (i = 1, . . .,N). From 

each of the M time series embedded vectors Xk,i are 

reconstructed with time delay embedding. 

 Xk ,i = ( xk ,i , xk ,i+l , xk,i+2l , . . ., xk,i+(m.1)l ) 

 

where l is the lag and m is the embedding dimension. 

 

Finding Critical distances: 

For each time series k and each time i we 

define the probability Pε k,i that embedded vectors 

are closer to each other than a distance ε: 

=  (7) 

Here the | ∙ | is the Euclidean distance and θ is the 

Heaviside step function, θ(x) = 0 if x ≤ 0 and θ(x) =1 

for x > 0. Here w1 and w2 are two windows; w1 is 

the Theiler correction for autocorrelation effects and 

should be at least of the order of the autocorrelation 
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time, w2 is a window that sharpens the time 

resolution of the synchronization measure and is 

chosen such that w1 << w2<< N. Now for each k and 

each i the critical distance εk,i is determined for 

which Pεk,1 

k,i = pref   where pref<<1.             (8) 

Formation of H matrix: 

Now for each discrete time pair (i, j) within our 

considered window (w1 < |i . j | <w2) the number of 

channels Hi ,j is determined, where the embedded 

vectors Xk,i and Xk,j will be closer together than this 

critical distance εk,i : 

)                  (9) 

This number lies in a range between 0 and M, and 

reflects how many of the embedded signals 

“resemble” each other. 

Determination of Synchronization Likelihood(SL) Sk,i 

: 

The Synchronization Likelihood Sk,i,j for each 

channel k and each discrete time pair (i, j) is defined 

as  

if       (10) 

if         (11) 

The synchronization likelihood Sk,i is obtained by 

averaging over all j 

(12) 

The synchronization likelihood (SL) Sk,i is a 

measure which describes how strongly channel k at 

time i is synchronized to all the other M1 channels. 

The synchronization likelihood takes on values 

between pref and 1. Sk,i = pref corresponds with the 

case where all M time series are uncorrelated and Sk,i 

= 1 corresponds with maximal synchronization of all 

M time series. The value of pref can be set at an 

arbitrarily low level, and does not depend on the 

properties of the time series, nor is it influenced by 

the embedding parameters. 

Determination of functional connectivity using 

synchronization likelihood: 

1. Correlations between all pair wise combinations of 

EEG channels were determined with the 

synchronization likelihood. The SL ranges between 

Pref(a small number close to 0) and 1. 

2. The end result of computing the SL for all pair 

wise combinations of channels is a square matrix of 

size N x N (the number of EEG channels), where 

each entry Ni,j contains the value of the SL for the 

channels i and j. 

3. The resulting synchronization matrix is converted 

to a binary graph by applying a threshold. 

4. The cluster coefficients and path lengths were 

computed as a function of threshold or as a function 

of degree K. 

Recently a variety of methods have been 

proposed to detect more general types of  interactions 

between dynamical systems. Here, the instantaneous 

phase of both time series is computed, and 

interactions are quantified in terms of time-dependent 

n : m phase locking (n and m being integers). This 

approach has been successful in the study of EEG 

seizure data in the study of synchronization between 

muscle and cortical activity. However, this approach 

is only valid when the time series are approximately 

oscillatory. 

A more general approach is based upon the theory of 

non-linear dynamical systems. It was demonstrated in 

the 1980s and early 1990s that, contrary to intuition, 

two interacting chaotic systems can also display 

synchronization phenomena [1-6]. Initially 

synchronization was understood as identical 

synchronization, implying equality of the variables of 

the coupled systems. In the context of uni-

directionally coupled driver response systems Rulkov 

et al. [7] introduced the wider concept of generalized 

synchronization. Generalized synchronization exists 

between two dynamical systems X and Y when the 

state of the response system Y is a function of the 

state of the driving system X : Y = F(X) . When F is 

continuous, and  x i,x j are two points on the attractor 

of X which are very close together, then the  

corresponding points y i,y j on Y will also be close 

together. An important feature of generalized 

synchronization is that the corresponding time series 

need not resemble each other. Since the concept of 

generalized synchronization was introduced, several 

algorithms have been proposed to detect this type of 

interdependencies in experimental time series.  

 

In this paper we propose a synchronization 

likelihood measure S which avoids the bias pointed 

out by Pereda et al. and gives a straightforward 
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normalized estimate of the dynamical 

interdependencies between two or more 

simultaneously recorded time series. The measure is 

closely related to the concept of generalized mutual 

information as introduced by Pawelzik and co-

workers [8][9] and this measure can also be 

computed in a time-dependent way, making it 

suitable for the analysis of non-stationary data. 

IV. FUNCTIONAL NETWORK 

A 16 channel EEG data, with a sampling 

frequency of 128, is collected from a healthy subject 

during eyes closed states and each channel is of 

length 2624 samples and is of length. A 16x16 

correlation matrix is obtained by computing the 

correlation among these 16 channels. The resulting 

correlation matrix is converted to graphs by applying 

a threshold with 0.7.The following figure illustrates 

the correlation matrix and its corresponding threshold 

matrix. 

 

 
    

Figure 1: Correlation and Threshold matrix. 

 

Functional Network generated from a 16 Channel 

EEG data of eyes closed state 

A graph having 16 vertices/nodes, computed 

from a 1 6 channel EEG data is shown in figure 2 

below. 

 
Figure 2: A graph having 16 vertices/nodes 

It is observed from above in figure 1 that the 

correlation matrix shown all the nodes between 1 to 

11 are highly correlated (bright region) and the 

threshold matrix shows that the nodes with  

correlation coefficient less than threshold 0.7 are 

zero(black). The figure 2 gives the graphical 

representation of threshold matrix in the form of 

functional network or binary graph. The node 14th has 

zero degree which gives a disconnected graph. The 

resulting functional networks shown above has high 

cluster coefficient and small ‘mean shortest path 

length’ which gives the about functional network is a 

small world network. 

 

Degree distribution of Network: 

A plot of degree distribution (PD) for a 100 vertex 

graph, against degree, is shown figure 3. We can 

observe from the following figure that the 

distribution clearly follows a power law distribution 

P(k)   

 
Figure 3: A plot of degree distribution (PD) for a 100 

vertex graph 

Influence of threshold on connectivity in the case of a 

relaxed subject: 

An 8 channel EEG data is collected from a healthy 

relaxed subject. The 8 channels from 

different locations on the scalp C3, C4, F3, F4, O1, 

O2, P3, and P4 are denoted as 1, 2, 3, 4, 5, 6, 7, and 8 

respectively. Each channel data is of length 750 

samples. The correlation matrix is obtained by 

computing the correlation among these 8 channels. 

The correlation matrix is converted to 3. Threshold 

matrices by applying various thresholds Th=0.4, 0.5, 

and 0.6 respectively. The binary graphs are then 

extracted from the threshold matrices which are 

shown in figures 4, 5, and 6 below. 
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Figure 4: The ‘Threshold matrix’ and its ‘Functional 

network’ with Th = 0.4 

 

 
Figure 5: The ‘Threshold matrix’ and its ‘Functional 

network’ with Th = 0.5 

  

 
      

Figure 6: The ‘Threshold matrix’ and its ‘Functional 

network’ with Th = 0.6 

 

The average path length < L >, average clustering 

coefficient < C > and average degree of the network 

< k > are calculated and compared for each case. The 

results are shown in the following table 

 
   Table:1 

 

Observation: 

1. With the increase in threshold the connectivity is 

found to decrease. 

2. The average path length has increased drastically 

with the increase in threshold. 

3. The average clustering coefficient has decreased 

with the increase in threshold 

which indicates that the connectivity is decreasing. 

4. The average degree is decreasing gradually with 

the increase in threshold. 

 

Functional connectivity during epileptic seizure: 

A 10 channel EEG data is collected from subject 

suffering from epileptic seizure. The 10 channels 

from different locations on the scalp C3, C4, F3, F4, 

O1, O2, P3, P4, T3 and T4 are denoted as 1, 2, 3, 4, 

5, 6, 7, 8, 9 and 10 respectively. Each channel data is 

of length 230 samples. A 10x10 correlation matrix is 

obtained by computing the correlation among these 

10 channels. The correlation matrix is converted to a 

threshold matrix by applying the thresholds Th = 0.5. 

The binary graph is then extracted from the threshold 

matrix which is shown in figure 7 below. 

             
Figure 7: The ‘Threshold matrix’ and its ‘Functional 

network’ in an epileptic subject with Th = 0.5 

The average path length < L >, average clustering 

coefficient < C > and average degree of the network 

< k > are calculated and the results are shown in the 

table 2 below. 

 
 

Table: 2 

Comments: 

1. The average degree <K> of the network is 4.8 

which mean that the connectivity is very high during 

seizure. 

2. Comparing < K > = 4.8 in this case with that of 

relaxed subject < K > = 2.5 we can 

conclude that connectivity is more when the subject 

is suffering from epilepsy. 

Functional connectivity during eyes closed and eyes 

open states: 

A 16 channel EEG data, with a sampling frequency 

of 128, is collected from a healthy subject during 

eyes closed and eyes open states. During eyes closed 

condition, each 
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channel is of length 2624 samples and is of length 

1472 in the case of eyes open. A 16x16 correlation 

matrix is obtained by computing the correlation 

among these 16 channels. The correlation matrix is 

converted to a Threshold matrix by applying the 

thresholds Th = 0.8 in each case. The binary graphs 

are then extracted from respective threshold matrices 

which are shown in figures 8 and 9 below.  

  

 
   

Figure 8: The ‘Threshold matrix’ and its ‘Functional 

network’ when the subject has closed his eyes, Th = 

0.8 

  
      

Figure 9: The ‘Threshold matrix’ and its ‘Functional 

network’ when the subject has opened his eyes, Th = 

0.8 

 

The average path length < L >, average clustering 

coefficient < C > and average degree of the network 

< k > are calculated and compared for each case. The 

results are shown in the following table 3.  

 

 
Table: 3 

 

Observations: 

1. Both the graphs in this case are unconnected as it 

is expected since the correlation is very high (=0.8) 

this time. 

2. The high value of path length indicates the 

possibility of an isolated node which can be observed 

from the above figures. 

3. The average path length < L > is more in the case 

of Eyes opened where as the Clustering coefficient < 

C > is more for eyes closed state. This indicates that 

the connectivity is more in eyes closed condition. 

4. The average degree of the network < K > is more 

in the case of subject with his eyes closed which 

means that the former(eyes closed) is densely 

connected where as the later(eyes open) is sparsely 

connected. 

 

5. Analysis of functional connectivity using real 

data for synchronization likelihood (SL): 

 

Functional connectivity in the case of a relaxed 

subject: 

 

An 8 channel EEG data is collected from a 

healthy relaxed subject. The 8 channels from 

different locations on the scalp C3, C4, F3, F4, O1, 

O2, P3, and P4 are denoted as 1, 2, 3, 4, 5, 6, 7, and 8 

respectively. Each channel data is of length 750 

samples. The SL matrix is obtained by computing the 

SL among these 8 channels pair wise. The SL matrix 

is converted in to the threshold matrix by applying 

the threshold Th=0.05,the black square in the above 

threshold matrix indicates ‘ZERO’ which means the 

SL between the considered pair has fallen below the 

threshold and a white square indicates ‘ONE’ 

(Th>0.05).The corresponding functional network is 

then extracted from the threshold matrix which is 

shown in figure 2. 

 

Relaxed subject, Th= 0.05  

 

 
 

Figure 10: The ‘Threshold matrix’ and its ‘Functional 

network’ in relaxed subject with Th = 0.05 
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The average pathlength < L >, average clustering 

coefficient < C > and average degree of the network 

< k > are calculated and are shown in the following 

table 1. 

 

 
Table: 4 

 

Functional connectivity during epileptic seizure: 

A 10 channel EEG data is collected from subject 

suffering from epileptic seizure. The 10 

channels from different locations on the scalp C3, 

C4, F3, F4, O1, O2, P3, P4, T3 and T4 are denoted as 

1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 respectively. Each 

channel data is of length 230 samples. A 10x10 SL 

matrix is obtained by computing the pair wise SL 

among these 10 channels. The SL matrix is converted 

to a threshold matrix by applying the thresholds Th = 

0.04. The binary graph is then extracted from the 

threshold matrix which is shown in figure 11 below. 

     

  
    

Figure 11: The ‘Threshold matrix’ and its ‘Functional 

network’ in an epileptic subject with Th = 0.04 

 

The average path length < L >, average clustering 

coefficient < C > and average degree of the network 

< k > are calculated and the results are shown in the 

following table 5 below. 

 
   Table: 5 

 

Comments: 

1. The average degree of the network is given by 8.4 

which mean that the connectivity is very high during 

seizure. 

2. Comparing < k > = 8.4 in this case with that of 

relaxed subject < K > = 2.875 we can conclude that 

connectivity is more when the subject is having a 

epileptic seizure. 

 

Functional connectivity during eyes closed and eyes 

open: 

A 16 channel EEG data, with a sampling frequency 

of 128, is collected from a healthy subject during 

eyes closed and eyes open states. During eyes closed 

condition, each channel is of length 2624 samples, it 

is of length 1472 in the case of eyes open. A  6x16 

correlation matrix is obtained by computing the 

correlation among these 16 channels. The correlation 

matrix is converted to a Threshold matrix by 

applying the thresholds Th = 0.5 in each case. The 

functional network is then extracted from respective 

threshold matrices which are shown in figures 12  

and13below.

 

  

    

Figure 12: The ‘Threshold matrix’ and its ‘Functional 

network’ when the subject has closed his eyes, Th = 

0.05    

 
    

Figure 13: The ‘Threshold matrix’ and its ‘Functional 

network’ when the subject has opened his eyes, Th = 

0.05 

The average path length < L >, average clustering 

coefficient < C > and average degree of the network 



© May 2017 | IJIRT | Volume 3 Issue 12 | ISSN: 2349-6002 

IJIRT 144538 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 165 

 

< k > are calculated and compared for each case. The 

results are shown in the following table 3. 

 
 

Table: 6 

Observations: 

1. Both the graphs in this case are connected. 

2. The average path length < L > is more in the case 

of Eyes opened. Since <L> is inversely proportional 

to connectivity we can conclude that the connectivity 

is less during eyes opened condition. 

3. The Clustering coefficient < C > is more for the 

eyes closed condition. The more the 

clustering coefficient the more is the connectivity of 

that graph. This also indicates that the connectivity is 

more in the eyes closed condition. 

4. The average degree of the network < K > is more 

in the case of subject with his eyes closed which 

means that the former(eyes closed) is densely 

connected where as the later(eyes open) is sparsely 

connected. 

V CONCLUSION 

The functional connectivity in brain is analyzed using 

correlation, a linear technique and synchronization 

Likelihood(SL), a nonlinear technique. The 

functional connectivity is extracted using functional 

network based on the obtained adjacency matrix. The 

attributes of the functional network like average 

pathlength (Lavg ),clustering coefficient( Cavg ) and 

degree distribution are evaluated for both the cases. 

The power law is observed from the degree 

distribution results which conclude that the human 

brain network is scale free. The functional 

connectivity is studied and compared for varies cases 

of interest.. The connectivity is found more in the 

case of epileptic seizure compared to a normal 

recording and more in eyes closed state compared to 

eyes opened state. The limitation of linear technique 

and the advantage of nonlinear technique were 

explained clearly. All this work provides sufficient 

information for analyzing the connectivity of the 

human brain. 
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