
© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 195

A study on software quality

B.Reshma1, B.Sathyavani
2

Rama Devi Burri, Associate professor in IT, LBRCE, Mylavaram, Vijayawada

Abstract-Software is integrated in to our lives more

frequently in each and every aspect of our lives. It

grows rapidly in its size and functionality, so we need to

develop more accurate, high-quality and reliable

software to attain the software quality assurance more

efficiently and proficiently. To estimate the quality of

software artifacts and to stay behind its level far above

the ground is much more complicated than to do them

for the other developed goods.

Index Terms-Software quality assurance, Software

engineering.

I. INTRODUCTION

The Software engineers have been tasked to develop

large and composite programs in a cost efficient

manner, so software engineers are facing many

problems, without having a better knowledge in the

field, such as late release of software, development

teams beyond the budget, poor quality, user

requirements are not completely supported by the

software, difficult maintenance and unreliable

software and lack of organized approach. Thus

number of large size projects failed.

II. SOFTWARE QUALITY

The degree to which a software product meets

established requirements is the software quality. The

quality depends upon the degree to which those

established requirements accurately represent

stakeholders and users.

 A software quality is defined based on the study of

external and internal features of the software. The

external quality is defined based on how software

performs in real time circumstances in operational

mode and how it is useful for its users. The internal

quality focuses on the essential aspects that are

reliant on the quality of the code which is developed.

The user concentrates more on the software how it

works at the external level, but the quality at external

level can be maintained only if the coder has written

a meaningful and good quality code. The quality

system encompasses different activities like Staff

development of personnel employed within the

quality area. The development of standards procedure

and guidelines.

Fig: Software quality

There are two significant approaches that are used to

establish the quality of the software:

1) Defect Management Approach

2) Quality Attributes approach

Due to lack of understanding of the requirements

which are given by the customer the development

team may leads to design error. The errors can be

caused due to poor functional logic, poor coding and

improper requirements gathering.

 Error is defined as the measure of the estimated

difference between the calculated value of the

quantity and its true value .Defect is defined as

anything that is not perfect in satisfying the customer

requirements. Many times the development team may

fail to give the perfect result due to lack of

understanding of the problem which is given by the

customer, this may leads to design errors. In order to

keep track of the defects a defect Management

Approach can be applied.

The number of defects is counted and actions are

taken as per the severity.

© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 196

Fig: Defect Management Approach

III. THE QUALITY ATTRIBUTES

According to ISO 1926 software quality Attributes

are as follows.

Quality attribute approach focuses on six quality

attributes:

1) Functionality

2) Reliability

3) Usability

4) Efficiency

5) Maintainability

6) Portability

Functionality: It is the ability o the system to do

some specific task. It is any necessary purpose of any

product or service. But the functionality does not

establish the architecture and there is no end for

creating the architecture to gratify functionality.

Reliability: Reliability may be defined as the

probability of an item to perform a required function

under stated conditions for a specified period of time.

Software Reliability is defined as the probability of

the failure free software operation for a specified

period of time in a specified environment. Software

reliability also affects the system reliability.

Unreliability of any product comes due to the failures

or presence of faults in the system. The unreliability

of software is primarily due to bugs or design faults

in the software.

Usability: This exists with regard to the functionality

and refers to the easiness of a given function. The

product with more usability can help to differentiate

products from those competitors. If two products are

significantly equal in effectiveness, the usability will

probably be regarded as superior.

Efficiency: This is concerned with the system

resources, like the amount of memory space, disk

space and network and so on. Efficiency is a

measurable concept; Efficiency can often be

expressed as a percentage of the result that could

ideally be expected.

1) More efficient to use—takes less time to achieve

a particular task.

2) Easier to learn—operation can be learn by

observing the object.

3) More satisfying to use.

Maintainability: IEEE defines maintenance as 'a

process of modifying a software system or

component after delivery to correct faults, to improve

performance or other attributes or to adapt the

product to a changed environment.' Software

maintainability is defined as the application is

implicit and improved. Software maintenance is very

important because 75% budget is dedicated to this.

 Learning from the past in order to improve the

ability to maintain systems, or improve reliability of

systems based on maintenance experience.

Portability: It is able to move software from one

machine platform to another. Portability is a

characteristic attributed to a computer program if it

can be used in operating systems other than the one

in which it was created without requiring major

rework. Usb sticks can be used on any computer due

to portability and we can store information in

removable disks.

© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 197

Characteristics Sub characteristics Definitions

 Suitability This is the important Functionality characteristic and refers to the suitability (to

specification) of the functions of the software.

 Accurateness This refers to the correctness of the functions; an ATM may provide a cash providing

function but is the amount correct.

Functionality Interoperability A given software component or system does not typically function in isolation. This sub

characteristic concerns the ability of a software component to interact with other

components or systems.

 Compliance Where appropriate industry (or government) laws and guidelines need to be complied with,

i.e. SOX. This sub characteristic addresses the accommodating capacity of software.

 Security This sub characteristic relates to unofficial access to the software functions.

 Maturity This sub characteristic concerns frequency of failure of the software.

Reliability Fault tolerance The ability of software to withstand (and recover) from component, or environmental,
failure.

 Recoverability Ability to bring back a failed system to full operation, including data and network

connections.

 Understandability Determines the ease of which the systems functions can be understood, relates to user

models in Human Computer Interaction methods.

Usability

Learn ability Learning effort for different users, i.e. novice, expert, casual etc.

 Operability Ability of the software to be easily operated by a given user in a given environment.

Efficiency

Time behavior Characterizes response times for a given through put, i.e. transaction rate.

 Resource
behavior

Characterizes resources used, i.e. memory, cpu, disk and network usage.

 Analyzability Characterizes the ability to identify the root cause of a failure within the software.

Maintainability Changeability Characterizes the amount of effort to change a system.

 Stability Characterizes the sensitivity to change of a given system that is the negative impact that

may be caused by system changes.

 Testability Characterizes the effort needed to verify a system change.

 Adaptability Characterizes the ability of the system to change to new specifications or operating

environments.

Portability Install ability Characterizes the effort required to install the software.

 Conformance Similar to agreement for functionality, but this characteristic relates to portability. One

example would be Open SQL conformance which relates to portability of database used.

 Replace ability Characterizes the plug and play feature of software components, that is how easy is it to

exchange a given software component within a specified environment.

© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 198

IV. THE COST OF THE SOFTWARE QUALITY

Cost of quality is calculated by analyzing the

conformance costs and non-conformance costs. A

conformance cost is related to:

1) Prevention costs: amount spent on ensuring that

all quality assurance practices are followed

correctly. This includes tasks like training the

team, code reviews and any other Quality

assurance related activity etc.

2) Appraisal costs: this is the amount of money

spent on planning all the test activities and then

carrying them out such as developing test cases

and then executing them.

The non-conformance cost is the expense that arises

due to:

1) Internal failures: It is an expenditure that arises

when test cases are executed for the first time at

interior level and some of them fail. The

operating cost arise when the programmer has to

correct all the defects uncovered from his piece

of code at the time of unit or component testing.

2) External failures: It is the expense that occurs

when the defect is found by the customer instead

of the tester. These expenses are much more than

what arise at internal level, particularly if the

customer gets unconvinced or escalates the

software failure.

V.COST OF SOFTWARE FAILURE

It displays lack of competence to keep up: this

usually happens when the software starts aging. As it

grows old the size increases because the easiest way

of accumulating a feature is by adding new code

without moving any part of code written earlier. Over

a period of time it becomes bulky and it becomes

difficult to identify the sections of code that need to

be changed.

1) Performance drop is observed: Every application

normally slows down with age and tends to

reside in more and more computer memory

therefore it is better to switch to other software.

2) It doesn’t seem to be reliable: It is a known fact

that every time when changes are made to the

code of the software to fix an error, more defects

are introduced in the system. Amazingly, this is

one of the major reasons for increased failure

rates and in order to save condition it is always

better to through the project or give up bug

fixing.

 VI. SOFTWARE QUALITY IMPROVEMENT

The factors influence the quality of the software is :

1) Software architecture

2) Software reliability models

3) Software quality metrics

4) Root cause analysis

REFERENCES

[1] IEEE Standard for Software Quality Assurance

Processes ISO/IEC/IEEE 24765:2010 [B42]).

[2] H. Pham, Software Reliability, Springer,

Singapore, 2000.

[3] David Hooker, Seven Principle of Software

Development.

[4] M. Jorgensen, Software quality measurement

