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Abstract-In every real time object detection video 

system, pre-processing step includes moving object 

detection algorithm which identifies (extract) useful 

information of moving objects present in a video. Most 

algorithms of moving object detection require large 

memory space for storage of background related 

information, therefore the implementation of such 

algorithms becomes a difficult task as there are limited 

resources for embedded systems. Therefore, to 

overcome this limitation, in this paper we present an 

algorithm which optimizes memory use along with 

increasing speed and therefore performance and 

reliability of moving object detection scheme for video 

systems. The scheme being modified from original 

clustering-based moving object detection algorithm and 

has coded in C sharp is presented here. Results of the 

same were compared with the original clustering-based 

moving object detection and analyzed thoroughly on 

qualitative and quantitative basis. 

The experimental results revealed that there is 11.66% 

reduction in memory requirement, hence speed has 

increased by 2% and therefore performance and 

reliability has increased by 4%, as compared to original 

without affecting accuracy and robustness. 

Index Terms- Real Time Moving Object Detection, 

Video Surveillance System, Cluster Based Algorithm. 

I. INTRODUCTION 

In today‟s world, due to terrorist activities and other 

general social problems, the design of an real time 

object detection for video systems has become an 

important aspect of research and development in the 

field of automation of video surveillance systems for 

safety and security. These are also motivated by the 

constant increase in the number of cameras which 

naturally demands elimination of the human 

interaction within the video monitoring systems. 

Typically, the first step in any automated video 

surveillance system is the detection of moving 

objects, the outputs of which are used in the further 

processing steps.  Thus, the efficiency and 

performance of the complete object detection video 

system solely depends on the effectiveness of the 

moving object detection algorithm.  

Therefore, over the time a number of moving object 

detection algorithms have been proposed - each 

trying to compete their counterpart in terms of 

performance, reliability and speed. In addition to this, 

the algorithm should also be computationally 

efficient. The objective of the moving object 

detection algorithm is to identify the set of pixels that 

are significantly different from the previous image of 

the sequence, for sequence of images taken from the 

scene at different time interval[1]. There are a 

number of algorithms present in the literature for 

moving object detection.  The most simplest 

approach used for moving object detection is based 

on background subtraction methods, where a 

background model is first built using images from a 

sequence, which is then used for the purpose of 

segmentation (to find the moving objects) by 

subtracting the current frame pixel-by-pixel from the 

build background model.  Thus, the accuracy of 

moving object detection process depends on how 

well the background is modeled.  Researchers have 

reported several moving object detection methods 

that are closely related to background subtraction e.g. 

change vector analysis [3]-[5], image rationing [6], 

and frame differencing using sub-sampled gradient 

images [7].  

The simplicity of background subtraction based 

approaches comes at the cost of moving object 

detection quality and these approaches are unlikely to 

outperform the more advanced algorithms proposed 

for real-world surveillance applications such as 

predictive models [8]-[12], adaptive neural network 

[13], and shading models [14]-[16]. A comprehensive 

description and comparative analysis of these 

methods has been presented by Radke et al. [1]. 



© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002 

IJIRT 144848 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  75 

 

Even for stationary background situations, there may 

be changes like light intensity changes in day time 

which must be a part of the stationary background.  

To address this problem, the researchers have 

designed adaptive background subtraction techniques 

[17]-[19] for moving object detection using Gaussian 

Density Function which are capable of handling light 

intensity/illumination changes in a scene with 

stationary background scenarios.  But the 

backgrounds in the real-world scenes are pseudo-

stationary and hence for real-world surveillance 

applications background cannot be assumed perfectly 

stationary.  The pseudo-stationary background in the 

natural scenes are the consequences of the events like 

swaying branches of trees, moving tree leaves in 

windows of rooms, moving clouds, the ripples of 

water on a lake, or moving fan in the room.  These 

small perturbations in the scenes are not desirable 

and should be incorporated into background. The 

statistical background modeling scheme using a 

single Gaussian is not capable of correctly modeling 

such pseudo-stationary backgrounds.  Realizing this, 

Stauffer and Grimson [20] proposed an Adaptive 

Background Mixture Models using mixture of 

Gaussians to model such pseudo-stationary 

backgrounds.  

However, maintaining these mixtures for every pixel 

in the frame is computational expensive and results in 

low frame rates. To overcome this limitation Butler et 

al. [21] proposed a new approach, similar to that of 

Stauffer and Grimson [20].  The processing, in this 

approach, is performed on YCrCb video data format 

which still requires many computations and a large 

amount of memory for storing the background 

models. In any automated video surveillance system, 

moving object detection is one of the important 

component which acts as a pre-processing step and 

on its outputs many other processing modules are 

dependent.  Therefore, in addition to being accurate 

and robust, a moving object detection technique must 

also be efficient in terms of computational resources 

and memory requirement.  This is because many 

other complex algorithms of an automated video 

surveillance system also runs on the same embedded 

or FPGA platform if standalone implementation is 

desired which is actually the case required for any 

automated video surveillance system.  Thus, in order 

to address the problem of reducing the computational 

complexity, Chutani and Chaudhury [22] proposed a 

block-based clustering scheme with a very low 

complexity for moving object detection.  On one 

hand this scheme is robust enough for handling 

pseudo-stationary nature of background, and on the 

other it significantly lowers the computational 

complexity and is well suited for designing 

standalone systems.  However, the algorithm is still 

not much efficient in terms of memory requirements.  

Therefore, to optimize the memory requirements of 

the clustering based moving object detection 

algorithm, we have presented a memory efficient 

moving object detection algorithm which also will 

eventually result in increase in performance and 

reliability. The rest of the paper is organized as 

follows: in the next section, we detail the original 

clustering based moving object detection algorithm.  

In third section, we present the memory analysis of 

original clustering based moving object detection 

algorithm and certain important observations based 

on which the memory efficient algorithm is designed. 

The designed memory efficient moving object 

detection algorithm with its pseudo-code is described 

in the fourth section. Verification results and memory 

reduction results are reported in the fifth section. 

Finally, we conclude this paper with a short 

summary. 

II. CONCEPT OF ORIGINAL CLUSTERING-

BASED MOVING OBJECT DETECTION 

ALGORITHM 

In this section, the clustering based moving object 

detection scheme is briefly described. For more 

detailed description we refer to [22] and [21]. 

Clustering based moving object detection uses a 

block-based similarity computation scheme.  

To start with, each incoming video frame is 

partitioned into 4x4 pixel blocks.  

Each 4x4 pixel block is modeled by a group of four 

clusters where each cluster consists of a block 

centroid (in RGB) and a frame number which 

updated the cluster most recently. Optionally, for 

each block there may be a motion flag field. The 

group of four clusters is necessary to correctly model 

the pseudo-stationary background, as a single cluster 

is incapable of modeling multiple modes that can be 

present in pseudo-stationary backgrounds.  

The group size is selected as four because it has been 

reported by Chutani and Chaudhury [22] that four 
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clusters per group yield a good balance between 

accuracy and computational complexity. The basic 

computational scheme is shown in Fig. 1 and the 

pseudo-code is shown in Fig. 2. The sequence of 

steps for moving object detection using original 

clustering-based scheme is given below. 

Fig.1. Clustering-based Moving Object Detection 

Scheme. 

Block Centroid Computation: Each incoming frame 

is partitioned into 4x4 blocks. For each block, the 

block centroid for grayscale image is computed by 

taking the average intensity value of the 16 pixels of 

that block. The block centroid is of 8-bits. 

Cluster Group Initialization: During the initial four 

frames, initialization is performed. In the first frame, 

the first cluster of each block is initialized with its 

centroid set to the block centroid of corresponding 

block of the first frame and its frame number is set to 

1. In the second frame, the second cluster of each 

block is initialized with its centroid set to block 

centroid of corresponding block of the second frame 

and its frame number is set to 2. In the third frame, 

the third cluster of each block is initialized with its 

centroid set to the block centroid of corresponding 

block of the third frame and its frame number is set to 

3. Similarly, fourth frame is initialized. In this way, 

all four clusters of the cluster group are initialized.  

Cluster Matching: After initialization, the next step 

for moving object detection in incoming frames is to 

compare each of the incoming blocks against the 

corresponding cluster group. The goal is to find a 

matching cluster within the cluster group. For finding 

a matching cluster, for each cluster in the cluster 

group, the difference between its centroid and the 

incoming current block centroid is computed. The 

cluster with minimum centroid difference below the 

user defined threshold is considered as a matching 

cluster. In order to simplify this computation, 

Manhattan distance (sum of absolute differences) is 

used which avoids the overheads of multiplication in 

difference computation [21]. Eliminating 

multiplications is very beneficial in terms of reducing 

computational complexity of the algorithm as 

multiplications are costly in hardware. 

Cluster Update: If, for a given block, a matching 

cluster is found within the cluster group, then the 

matching cluster is updated. The frame number of the 

matching cluster is replaced by the current frame 

number and the centroid of the matching cluster is 

replaced by the average value of matching cluster 

centroid and the incoming current block centroid. 

Cluster Replace: If, for a given block, no matching 

cluster could be found within the group, then the 

oldest cluster which has not been updated for the 

longest period of time (cluster with minimum frame 

number) is deleted and a new cluster is created 

having the current block centroid as its centroid and 

the current frame number as its frame number. 

Classification: For a given block, if no matching 

cluster is found and the oldest cluster is replaced, 

then it implies that the incoming current block is not 

matching with the background models and it is 

marked as moving object detected block by setting 

the motion flag field of the block to =1„. If a 

matching cluster is found within the cluster group 

and the matching cluster is updated, then the 

incoming current block belongs to the background 

and therefore, the motion flag field of the block is set 

to =0„ (i.e. no moving object detected). 

I. Algorithm Analysis And Observations  

In this algorithm, there are two main parameters (i.e. 

Centroid and Frame Number) associated with each 

4x4 pixels block for storing the background related 

information. For grayscale images, the Centroid 

value is of 8-bits and Frame Number is stored using 

16-bits data format.  Therefore, for each 4x4 pixels 

block it would require 24-bits to store one 

background model information.  

As there are four background models used in the 

algorithm, it requires 96-bits memory space for 

storing background information for each 4x4 pixel 

block. For PAL (720x576) resolution video, the total 

number of 4x4 pixels blocks are 25920 (= 720/4 * 

576/4). Therefore, total memory space required to 

store the background information for PAL resolution 

videos is 25920x100 bits = 2592000 bits = 2530 

Kbits = 2.373 Mbits.  For achieving real-time 
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performance, it is very difficult to implement this 

algorithm on limited resources standalone embedded 

platforms like low-cost low-end FPGAs having very 

less on-chip memory (Block RAMs).  Therefore, for 

this reason, further emphasis needs to be given to the 

minimization of memory requirements of clustering-

based moving object detection scheme proposed by 

[22] without compromising on accuracy and 

robustness of moving object detection. 

 Accordingly, the clustering-based moving object 

detection algorithm was re-looked at and the memory 

analysis was carried out.  The memory size required 

for storing the background information is directly 

proportional to the size of the cluster group, block 

size, and video frame size.  

Therefore, for given standard PAL (720x576) size 

color video streams, memory size can be reduced 

either by reducing the number of clusters from four to 

three or by increasing the 4x4 pixels block size to a 

larger block size.  But Chutani and Chaudhury [22] 

had chosen to select a cluster size of 4 clusters and 

block size of 4x4 pixels because empirically they had 

found that these values yielded a good balance 

between accuracy and computational complexity.  

In the first case, if the number of clusters is reduced 

to three then the algorithm„s background model used 

to capture pseudo-stationary changes/movements 

becomes weak and the algorithm becomes more 

sensitive to pseudo-stationary background changes, 

resulting in false relevant moving object detection 

outputs for pseudo-stationary background changes.  

In the second case, for larger block sizes, the system 

becomes less sensitive to relevant motions in smaller 

areas in a video scene.  Therefore, none of the above 

two techniques can be used to reduce memory size as 

the objective is to reduce memory size without 

compromising on the accuracy and the robustness  of 

moving object detection.  For this reason, we re-

analyzed the original clustering based moving object 

detection algorithm and the following observations 

were resulted. 

The important observation is that during the cluster 

updating (in case a matching cluster is found) or 

cluster replacement (in case no matching cluster is 

found) the actual time or frame number when the 

cluster is updated or replaced is not necessarily 

required. During cluster update, the matching cluster 

label is required (i.e. first or second or third or 

fourth), not the actual value of the Frame Number.  

In case of cluster replacement, the oldest cluster label 

(which has not been updated for the longest period of 

time) is required. The Frame Number is stored and 

used to get this required information only. This 

implies that there is no need of storing the complete 

Frame Number value. An index value is sufficient to 

maintain the cluster updating or replacement history, 

which implies that it is the newest cluster (most 

recently updated or replaced), the second newest 

cluster, the second oldest cluster, or the oldest cluster 

(which has not been updated for the longest period of 

time).  

As there are four clusters, therefore, a 2-bit index 

value is sufficient to record this information (i.e. the 

newest cluster, the second newest cluster, the second 

oldest cluster, or the oldest cluster). This reduces the 

16-bit wide Frame Number memory to 2-bit wide 

memory and results in significant reduction in 

memory requirements.  

Based on this observation and associated 

modifications in the original clustering-based moving 

object detection scheme, a memory efficient moving 

object detection scheme is proposed and detailed in 

the next section. 

Proposed Moving Object Detection Algorithm 

There are many approaches for motion detection of 

objects in a continuous video stream. The concept 

more or less remains same of comparing the current 

video frame from previous frames or with something 

that we called background. In this algorithm we use 

the AForge.NET framework.  

The application supports the following types of video 

sources: 

 AVI files(using Video for Windows); 

 Updating JPEG from internet cameras; 

 MJPEG(motion JPEG) streams from different 

internet cameras; 

 Local capture device(USB cameras or other 

capture devices) 

Assume that we have an original 24bpp RGB image 

called current frame(image), a grayscale copy of 

it(current frame) and previous video frame also gray 

scaled(background frame). To find the regions where 

these two frames are differing a bit, we use difference 

and threshold filters. 

It is possible to count the pixels, and if the amount of 

it will be greater than a predefined alarm level we can 

signal about a motion event. As most cameras 

produce a noisy image, we will get motion in such 
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places, where there is no motion at all. To remove 

random noisy pixels, we use erosion filter. 

First frame of the video sequence is used as 

background frame. Then the current frame is 

compared with background frame. Our approach is to 

“move” the background frame to the current frame on 

the specified amount (we have use level 1 per frame). 

We move the background frame slightly in the 

direction of the current frame; we are changing colors 

of pixels in the background frame by one level per 

frame. 

We apply pixel ate filter to the current frame and to 

the background before further processing as we can 

see a small numbers on the objects. 

The idea of morph filter is to preserve specified 

percentage of the source filter and to add missing 

percentage from overlay image.  We know that a 

binary image contains a difference between current 

frame and the background frame. To add motion 

alarm feature, we need to calculate the amount of 

white pixels on this difference image. Looking at 

picture2, we can see that objects are highlighted with 

a curve, which represents the moving object‟s 

boundary. By using blob counter we can get the 

number of objects, their position and the dimension 

on a binary image. For simplicity in the blob 

counting approach we can accumulate not the white 

pixels count, but the area of each detected object. 

Then if the computed amount of changes is greater 

than a predefined value, an alarm event occurred. 

There are different ways to process motion alarm 

event, the most useful one is video saving on motion 

detection. 

III. RESULT AND CONCLUSION 

A) Graphical Representation for results  

 

B) Tabular Representation for results  

C) Landing page after sign in 

In the first, we will get an image with white pixels on 

the place where the current frame is different from 

the previous frame on the specified threshold value. 

If the amount of pixels will be greater than a 

predefined alarm level we can signal a motion event. 

Due to erosion filter, we will get only the regions of 

the actual motion. 

In this research article, a memory optimized moving 

object detection scheme, useful for designing moving 

object detection systems, has been presented. The 

emphasis has been given on optimizing memory 

requirements for storing background related 

information. It has been coded using AForge.NET 

framework. The moving object detection results of 

proposed memory efficient scheme were qualitatively 

as well as quantitatively analyzed and compared with 

the original clustering-based moving object detection 

algorithm. The experimental results revealed that 

there is 11.66% reduction in memory requirement, 

hence speed has increased by 2% and therefore 

performance and reliability has increased by 4%, as 

compared to original without affecting accuracy and 

robustness. 
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