
© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144848 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 74

Implementation of Real Time Moving Object Detection

for Video Systems

Kiran Chaudhari

1
, Santhosh Banoth

2
,

1
Student, Wainganga College of Engineering & Management

2
Faculty, Wainganga College of Engineering & Management

Abstract-In every real time object detection video

system, pre-processing step includes moving object

detection algorithm which identifies (extract) useful

information of moving objects present in a video. Most

algorithms of moving object detection require large

memory space for storage of background related

information, therefore the implementation of such

algorithms becomes a difficult task as there are limited

resources for embedded systems. Therefore, to

overcome this limitation, in this paper we present an

algorithm which optimizes memory use along with

increasing speed and therefore performance and

reliability of moving object detection scheme for video

systems. The scheme being modified from original

clustering-based moving object detection algorithm and

has coded in C sharp is presented here. Results of the

same were compared with the original clustering-based

moving object detection and analyzed thoroughly on

qualitative and quantitative basis.

The experimental results revealed that there is 11.66%

reduction in memory requirement, hence speed has

increased by 2% and therefore performance and

reliability has increased by 4%, as compared to original

without affecting accuracy and robustness.

Index Terms- Real Time Moving Object Detection,

Video Surveillance System, Cluster Based Algorithm.

I. INTRODUCTION

In today‟s world, due to terrorist activities and other

general social problems, the design of an real time

object detection for video systems has become an

important aspect of research and development in the

field of automation of video surveillance systems for

safety and security. These are also motivated by the

constant increase in the number of cameras which

naturally demands elimination of the human

interaction within the video monitoring systems.

Typically, the first step in any automated video

surveillance system is the detection of moving

objects, the outputs of which are used in the further

processing steps. Thus, the efficiency and

performance of the complete object detection video

system solely depends on the effectiveness of the

moving object detection algorithm.

Therefore, over the time a number of moving object

detection algorithms have been proposed - each

trying to compete their counterpart in terms of

performance, reliability and speed. In addition to this,

the algorithm should also be computationally

efficient. The objective of the moving object

detection algorithm is to identify the set of pixels that

are significantly different from the previous image of

the sequence, for sequence of images taken from the

scene at different time interval[1]. There are a

number of algorithms present in the literature for

moving object detection. The most simplest

approach used for moving object detection is based

on background subtraction methods, where a

background model is first built using images from a

sequence, which is then used for the purpose of

segmentation (to find the moving objects) by

subtracting the current frame pixel-by-pixel from the

build background model. Thus, the accuracy of

moving object detection process depends on how

well the background is modeled. Researchers have

reported several moving object detection methods

that are closely related to background subtraction e.g.

change vector analysis [3]-[5], image rationing [6],

and frame differencing using sub-sampled gradient

images [7].

The simplicity of background subtraction based

approaches comes at the cost of moving object

detection quality and these approaches are unlikely to

outperform the more advanced algorithms proposed

for real-world surveillance applications such as

predictive models [8]-[12], adaptive neural network

[13], and shading models [14]-[16]. A comprehensive

description and comparative analysis of these

methods has been presented by Radke et al. [1].

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144848 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 75

Even for stationary background situations, there may

be changes like light intensity changes in day time

which must be a part of the stationary background.

To address this problem, the researchers have

designed adaptive background subtraction techniques

[17]-[19] for moving object detection using Gaussian

Density Function which are capable of handling light

intensity/illumination changes in a scene with

stationary background scenarios. But the

backgrounds in the real-world scenes are pseudo-

stationary and hence for real-world surveillance

applications background cannot be assumed perfectly

stationary. The pseudo-stationary background in the

natural scenes are the consequences of the events like

swaying branches of trees, moving tree leaves in

windows of rooms, moving clouds, the ripples of

water on a lake, or moving fan in the room. These

small perturbations in the scenes are not desirable

and should be incorporated into background. The

statistical background modeling scheme using a

single Gaussian is not capable of correctly modeling

such pseudo-stationary backgrounds. Realizing this,

Stauffer and Grimson [20] proposed an Adaptive

Background Mixture Models using mixture of

Gaussians to model such pseudo-stationary

backgrounds.

However, maintaining these mixtures for every pixel

in the frame is computational expensive and results in

low frame rates. To overcome this limitation Butler et

al. [21] proposed a new approach, similar to that of

Stauffer and Grimson [20]. The processing, in this

approach, is performed on YCrCb video data format

which still requires many computations and a large

amount of memory for storing the background

models. In any automated video surveillance system,

moving object detection is one of the important

component which acts as a pre-processing step and

on its outputs many other processing modules are

dependent. Therefore, in addition to being accurate

and robust, a moving object detection technique must

also be efficient in terms of computational resources

and memory requirement. This is because many

other complex algorithms of an automated video

surveillance system also runs on the same embedded

or FPGA platform if standalone implementation is

desired which is actually the case required for any

automated video surveillance system. Thus, in order

to address the problem of reducing the computational

complexity, Chutani and Chaudhury [22] proposed a

block-based clustering scheme with a very low

complexity for moving object detection. On one

hand this scheme is robust enough for handling

pseudo-stationary nature of background, and on the

other it significantly lowers the computational

complexity and is well suited for designing

standalone systems. However, the algorithm is still

not much efficient in terms of memory requirements.

Therefore, to optimize the memory requirements of

the clustering based moving object detection

algorithm, we have presented a memory efficient

moving object detection algorithm which also will

eventually result in increase in performance and

reliability. The rest of the paper is organized as

follows: in the next section, we detail the original

clustering based moving object detection algorithm.

In third section, we present the memory analysis of

original clustering based moving object detection

algorithm and certain important observations based

on which the memory efficient algorithm is designed.

The designed memory efficient moving object

detection algorithm with its pseudo-code is described

in the fourth section. Verification results and memory

reduction results are reported in the fifth section.

Finally, we conclude this paper with a short

summary.

II. CONCEPT OF ORIGINAL CLUSTERING-

BASED MOVING OBJECT DETECTION

ALGORITHM

In this section, the clustering based moving object

detection scheme is briefly described. For more

detailed description we refer to [22] and [21].

Clustering based moving object detection uses a

block-based similarity computation scheme.

To start with, each incoming video frame is

partitioned into 4x4 pixel blocks.

Each 4x4 pixel block is modeled by a group of four

clusters where each cluster consists of a block

centroid (in RGB) and a frame number which

updated the cluster most recently. Optionally, for

each block there may be a motion flag field. The

group of four clusters is necessary to correctly model

the pseudo-stationary background, as a single cluster

is incapable of modeling multiple modes that can be

present in pseudo-stationary backgrounds.

The group size is selected as four because it has been

reported by Chutani and Chaudhury [22] that four

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144848 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 76

clusters per group yield a good balance between

accuracy and computational complexity. The basic

computational scheme is shown in Fig. 1 and the

pseudo-code is shown in Fig. 2. The sequence of

steps for moving object detection using original

clustering-based scheme is given below.

Fig.1. Clustering-based Moving Object Detection

Scheme.

Block Centroid Computation: Each incoming frame

is partitioned into 4x4 blocks. For each block, the

block centroid for grayscale image is computed by

taking the average intensity value of the 16 pixels of

that block. The block centroid is of 8-bits.

Cluster Group Initialization: During the initial four

frames, initialization is performed. In the first frame,

the first cluster of each block is initialized with its

centroid set to the block centroid of corresponding

block of the first frame and its frame number is set to

1. In the second frame, the second cluster of each

block is initialized with its centroid set to block

centroid of corresponding block of the second frame

and its frame number is set to 2. In the third frame,

the third cluster of each block is initialized with its

centroid set to the block centroid of corresponding

block of the third frame and its frame number is set to

3. Similarly, fourth frame is initialized. In this way,

all four clusters of the cluster group are initialized.

Cluster Matching: After initialization, the next step

for moving object detection in incoming frames is to

compare each of the incoming blocks against the

corresponding cluster group. The goal is to find a

matching cluster within the cluster group. For finding

a matching cluster, for each cluster in the cluster

group, the difference between its centroid and the

incoming current block centroid is computed. The

cluster with minimum centroid difference below the

user defined threshold is considered as a matching

cluster. In order to simplify this computation,

Manhattan distance (sum of absolute differences) is

used which avoids the overheads of multiplication in

difference computation [21]. Eliminating

multiplications is very beneficial in terms of reducing

computational complexity of the algorithm as

multiplications are costly in hardware.

Cluster Update: If, for a given block, a matching

cluster is found within the cluster group, then the

matching cluster is updated. The frame number of the

matching cluster is replaced by the current frame

number and the centroid of the matching cluster is

replaced by the average value of matching cluster

centroid and the incoming current block centroid.

Cluster Replace: If, for a given block, no matching

cluster could be found within the group, then the

oldest cluster which has not been updated for the

longest period of time (cluster with minimum frame

number) is deleted and a new cluster is created

having the current block centroid as its centroid and

the current frame number as its frame number.

Classification: For a given block, if no matching

cluster is found and the oldest cluster is replaced,

then it implies that the incoming current block is not

matching with the background models and it is

marked as moving object detected block by setting

the motion flag field of the block to =1„. If a

matching cluster is found within the cluster group

and the matching cluster is updated, then the

incoming current block belongs to the background

and therefore, the motion flag field of the block is set

to =0„ (i.e. no moving object detected).

I. Algorithm Analysis And Observations

In this algorithm, there are two main parameters (i.e.

Centroid and Frame Number) associated with each

4x4 pixels block for storing the background related

information. For grayscale images, the Centroid

value is of 8-bits and Frame Number is stored using

16-bits data format. Therefore, for each 4x4 pixels

block it would require 24-bits to store one

background model information.

As there are four background models used in the

algorithm, it requires 96-bits memory space for

storing background information for each 4x4 pixel

block. For PAL (720x576) resolution video, the total

number of 4x4 pixels blocks are 25920 (= 720/4 *

576/4). Therefore, total memory space required to

store the background information for PAL resolution

videos is 25920x100 bits = 2592000 bits = 2530

Kbits = 2.373 Mbits. For achieving real-time

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144848 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 77

performance, it is very difficult to implement this

algorithm on limited resources standalone embedded

platforms like low-cost low-end FPGAs having very

less on-chip memory (Block RAMs). Therefore, for

this reason, further emphasis needs to be given to the

minimization of memory requirements of clustering-

based moving object detection scheme proposed by

[22] without compromising on accuracy and

robustness of moving object detection.

 Accordingly, the clustering-based moving object

detection algorithm was re-looked at and the memory

analysis was carried out. The memory size required

for storing the background information is directly

proportional to the size of the cluster group, block

size, and video frame size.

Therefore, for given standard PAL (720x576) size

color video streams, memory size can be reduced

either by reducing the number of clusters from four to

three or by increasing the 4x4 pixels block size to a

larger block size. But Chutani and Chaudhury [22]

had chosen to select a cluster size of 4 clusters and

block size of 4x4 pixels because empirically they had

found that these values yielded a good balance

between accuracy and computational complexity.

In the first case, if the number of clusters is reduced

to three then the algorithm„s background model used

to capture pseudo-stationary changes/movements

becomes weak and the algorithm becomes more

sensitive to pseudo-stationary background changes,

resulting in false relevant moving object detection

outputs for pseudo-stationary background changes.

In the second case, for larger block sizes, the system

becomes less sensitive to relevant motions in smaller

areas in a video scene. Therefore, none of the above

two techniques can be used to reduce memory size as

the objective is to reduce memory size without

compromising on the accuracy and the robustness of

moving object detection. For this reason, we re-

analyzed the original clustering based moving object

detection algorithm and the following observations

were resulted.

The important observation is that during the cluster

updating (in case a matching cluster is found) or

cluster replacement (in case no matching cluster is

found) the actual time or frame number when the

cluster is updated or replaced is not necessarily

required. During cluster update, the matching cluster

label is required (i.e. first or second or third or

fourth), not the actual value of the Frame Number.

In case of cluster replacement, the oldest cluster label

(which has not been updated for the longest period of

time) is required. The Frame Number is stored and

used to get this required information only. This

implies that there is no need of storing the complete

Frame Number value. An index value is sufficient to

maintain the cluster updating or replacement history,

which implies that it is the newest cluster (most

recently updated or replaced), the second newest

cluster, the second oldest cluster, or the oldest cluster

(which has not been updated for the longest period of

time).

As there are four clusters, therefore, a 2-bit index

value is sufficient to record this information (i.e. the

newest cluster, the second newest cluster, the second

oldest cluster, or the oldest cluster). This reduces the

16-bit wide Frame Number memory to 2-bit wide

memory and results in significant reduction in

memory requirements.

Based on this observation and associated

modifications in the original clustering-based moving

object detection scheme, a memory efficient moving

object detection scheme is proposed and detailed in

the next section.

Proposed Moving Object Detection Algorithm

There are many approaches for motion detection of

objects in a continuous video stream. The concept

more or less remains same of comparing the current

video frame from previous frames or with something

that we called background. In this algorithm we use

the AForge.NET framework.

The application supports the following types of video

sources:

 AVI files(using Video for Windows);

 Updating JPEG from internet cameras;

 MJPEG(motion JPEG) streams from different

internet cameras;

 Local capture device(USB cameras or other

capture devices)

Assume that we have an original 24bpp RGB image

called current frame(image), a grayscale copy of

it(current frame) and previous video frame also gray

scaled(background frame). To find the regions where

these two frames are differing a bit, we use difference

and threshold filters.

It is possible to count the pixels, and if the amount of

it will be greater than a predefined alarm level we can

signal about a motion event. As most cameras

produce a noisy image, we will get motion in such

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144848 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 78

places, where there is no motion at all. To remove

random noisy pixels, we use erosion filter.

First frame of the video sequence is used as

background frame. Then the current frame is

compared with background frame. Our approach is to

“move” the background frame to the current frame on

the specified amount (we have use level 1 per frame).

We move the background frame slightly in the

direction of the current frame; we are changing colors

of pixels in the background frame by one level per

frame.

We apply pixel ate filter to the current frame and to

the background before further processing as we can

see a small numbers on the objects.

The idea of morph filter is to preserve specified

percentage of the source filter and to add missing

percentage from overlay image. We know that a

binary image contains a difference between current

frame and the background frame. To add motion

alarm feature, we need to calculate the amount of

white pixels on this difference image. Looking at

picture2, we can see that objects are highlighted with

a curve, which represents the moving object‟s

boundary. By using blob counter we can get the

number of objects, their position and the dimension

on a binary image. For simplicity in the blob

counting approach we can accumulate not the white

pixels count, but the area of each detected object.

Then if the computed amount of changes is greater

than a predefined value, an alarm event occurred.

There are different ways to process motion alarm

event, the most useful one is video saving on motion

detection.

III. RESULT AND CONCLUSION

A) Graphical Representation for results

B) Tabular Representation for results

C) Landing page after sign in

In the first, we will get an image with white pixels on

the place where the current frame is different from

the previous frame on the specified threshold value.

If the amount of pixels will be greater than a

predefined alarm level we can signal a motion event.

Due to erosion filter, we will get only the regions of

the actual motion.

In this research article, a memory optimized moving

object detection scheme, useful for designing moving

object detection systems, has been presented. The

emphasis has been given on optimizing memory

requirements for storing background related

information. It has been coded using AForge.NET

framework. The moving object detection results of

proposed memory efficient scheme were qualitatively

as well as quantitatively analyzed and compared with

the original clustering-based moving object detection

algorithm. The experimental results revealed that

there is 11.66% reduction in memory requirement,

hence speed has increased by 2% and therefore

performance and reliability has increased by 4%, as

compared to original without affecting accuracy and

robustness.

REFERENCES

[1] R.J. Radke, S. Andra, O.A. Kofahi, and B.

Roysam, Image Change Detection Algorithms: A

Systematic Survey, IEEE Transactions on Image

Processing, Vol. 14, No. 3, pp. 294-307, 2005.

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144848 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 79

[2] S. Singh, SumeetSaurav, and Chandra Shekhar,

Moving Object Detection Scheme for Automated

Video Surveillance Systems, I.J. Image,

Graphics and Signal Processing, Vol. 7, pp. 49-

58, 2016.

[3] L. Bruzzone and D.F. Prieto, Automatic Analysis

of the Difference Image for Unsupervised

Change Detection, IEEE Transaction on

Geosciences and Remote Sensing, Vol. 38, No.

3, pp. 1171–1182, 2000.

[4] J.E. Colwell and F.P. Weber, Forest Change

Detection, In Proceedings: 15th International

Symposium on Remote Sensing of the

Environment, pp. 839-852, 1981.

[5] W.A. Malila, Change Vector Analysis: An

Approach for Detecting Forest Changes with

Landsat, In Proceedings: Symposium on

Machine Processing of Remotely Sensed Data,

pp. 326-336, 1980.

[6] A. Singh, Review Article: Digital Change

Detection Techniques using Remotely-sensed

Data, International Journal of Remote Sensing,

Vol. 10, No. 6, pp. 989-1003, 1989.

[7] L.D. Stefano, S. Mattoccia, and M. Mola, A

Change-detection Algorithm based on Structure

and Color, In Proceedings: IEEE Conference on

Advanced Video and Signal-Based Surveillance,

pp. 252-259, 2003.

[8] Y.Z. Hsu, H.H. Nagel, and G. Rekers, New

Likelihood Test Methods for Change Detection

in Image Sequences, Computer Vision, Graphics ,

Image Processing, Vol. 26, No. 1, pp. 73-106,

1984.

[9] K. Skifstad and R. Jain, Illumination

Independent Change Detection for Real World

Image Sequences, Computer Vision, Graphics,

Image Processing, Vol. 46, No. 3, pp. 387-399,

1989.

[10] A.S. Elfishawy, S.B. Kesler, and A.S. Abutaleb,

Adaptive Algorithms for Change Detection in

Image Sequence, Signal Processing, Vol. 23, No.

2, pp. 179-191, 1991.

[11] Z.S. Jain and Y.A. Chau, Optimum Multisensor

Data Fusion for Image Change Detection, IEEE

Transaction on System, Man and Cybernetics,

Vol. 25, No. 9, pp. 1340-1347, 1995.

[12] K. Toyama, J. Krumm, B. Brumitt, and B.

Meyers, Wallflower: Principles and Practice of

Background Maintenance, in Proceedings:

Seventh International Conference on Computer

Vision, pp. 255-261, 1999.

[13] C. Clifton, Change Detection in Overhead

Imagery using Neural Networks, Applied

Intelligence, Vol. 18, pp. 215-234, 2003.

[14] E. Durucan and T. Ebrahimi, Change Detection

and Background Extraction by Linear Algebra,

In Proceedings: IEEE, Vol. 89, No. 10, pp. 1368-

1381, 2001.

[15] L. Li and M.K.H. Leung, Integrating Intensity

and Texture Differences for Robust Change

Detection, IEEE Transaction on Image

Processing, Vol. 11, No. 2, pp. 105-112, 2002.

[16] S.C. Liu, C.W. Fu, and S. Chang, Statistical

Change Detection with Moments under Time-

Varying Illumination,‖ IEEE Transaction on

Image Processing, Vol. 7, No. 9, pp. 1258-1268,

1998.

[17] A. Cavallaro and T. Ebrahimi, Video Object

Extraction based on Adaptive Background and

Statistical Change Detection, In Proceedings:

SPIE Visual Communications and Image

Processing, pp. 465-475, 2001.

[18] S. Huwer and H. Niemann, Adaptive Change

Detection for Real-Time Surveillance

Applications, In Proceedings: Third IEEE

International Workshop on Visual Surveillance,

pp. 37-46, 2000.

[19] T. Kanade, R.T. Collins, A.J. Lipton, P. Burt,

and L. Wixson, Advances in Cooperative Multi-

Sensor Video Surveillance, In Proceedings:

DARPA Image Understanding Workshop, pp. 3-

24, 1998.

[20] C. Stauffer and W.E.L. Grimson, Learning

Patterns of Activity using Real-Time Tracking,

IEEE Transaction on Pattern Analysis and

Machine Intelligence, Vol. 22, No. 8, pp. 747-

757, 2000.

[21] D.E. Butler, V.M. Bove, and S. Sridharan, Real-

Time Adaptive Foreground/Background

Segmentation, EURASIP Journal on Applied

Signal Processing, Vol. 2005, pp. 2292-2304,

2005.

[22] E.R. Chutani and S. Chaudhury, Video Trans -

Coding in Smart Camera for Ubiquitous

Multimedia Environment, In Proceedings:

International Symposium on Ubiquitous

Multimedia Computing, pp.185–189, 2008.

