
© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144850 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 57

Floating-Point Butterfly Architecture Based on Carry

Select Adder Representation with Improvement in Speed

Computation

Easam. Swapna Priya Sindhuja

1, A.Hari Prasad
2
, P.Anil Kumar

 3

Student of M.TECH (DSCE), Dept. of ECE, KITS(S)

Associate Professor, Dept. of ECE, KITS(S)

Associate Professor, Dept. of ECE, KITS(S)

Abstract-Fast Fourier transform (FFT) coprocessor,

having a significant impact on the performance of

communication systems, and in DSP processors has

been a hot topic of research in recent years. The FFT

function is consists of consecutive multiply add

operations over complex numbers, dubbed as butterfly

units. Applying floating-point (FP) arithmetic to FFT

architectures, specifically butterfly units, has become

more popular recently. It offloads compute-intensive

tasks from general-purpose processors by dismissing FP

concerns (e.g., scaling and overflow/underflow).

However, the major downside of FP butterfly is its

slowness in comparison with its fixed-point counterpart.

This reveals the incentive to develop a high-speed FP

butterfly architecture to mitigate FP slowness. This

brief proposes a fast FP butterfly unit using a devised

FP fused-dot-product-add (FDPA) unit, to compute

AB±CD±E, based on binary-signed-digit (BSD)

representation. The FP three-operand BSD adder and

the FP BSD constant multiplier are the constituents of

the proposed FDPA unit. A carry-limited BSD adder is

proposed and used in the three-operand adder and the

parallel BSD multiplier so as to improve the speed of

the FDPA unit. Moreover, modified Booth encoding

technique is used to accelerate the BSD multiplier. The

synthesis results show that the proposed FP butterfly

architecture is faster than previous counterparts but

requires more area.

Index Terms- Carry Select Adder (CSA) representation,

butterfly unit, Fast Fourier Trans-form (FFT),

Floating-Point (FP), three-operand addition. BSD

(Binary significant digit) adder.

I. INTRODUCTION

Fast Fourier transform (FFT) circuitry consists of

several consecutive multipliers and adders over

complex numbers, hence an appropriate number

representation must be chosen. Most of the FFT

architectures have been using fixed-point arithmetic,

until recently that FFTs based on floating-point (FP)

operations are introduced. The main advantage of FP

over fixed-point arithmetic is the wide dynamic range

but it introduces at the expense of higher cost.

Moreover, use of IEEE-754-2008 standard for FP

arithmetic allows for an FFT coprocessor in

collaboration with general purpose processors. This

offloads compute-intensive tasks from the processors

and leads to higher performance. The main drawback

of the FP operations is their slowness in comparison

with the fixed-point counterparts. A way to speed up

the FP arithmetic is to merge several operations into a

single Floating point unit, and hence save the delay,

area, and power consumption. Using redundant

number systems is another well-known way of

overcoming Floating point slowness, where there is

no word-wide carry propagation within the

intermediate operations. Hence the overall delay of

the circuit is reduced.

II.LITERATURE SURVEY

The Sequential Fast Fourier Transform:The Discrete

Fourier Transform is an operation performed on a

series of elements to convert the underlying signal in

one domain to another domain (e.g., time to

frequency or vice- versa). The result has many useful

applications(DSP applications) and is one of the most

widely used algorithms of the 20th and 21st

centuries . The typical DFT operation performed on

N elements … is defined as

As a result of the input range of each element of the

array X is an additive that requires the cooperation of

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144850 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 58

every element of x. Thus, an N- DFT operation

element in the input array O (N2). In the case of a

large array of applications, compution of DFT is

difficult and requires more time. Therefore, DFT is

time-complexible algorithm, it is desirable to reduce

the complexity of DFT algorithm. In order to reduce

the computational complexity of DFT the scientist

Cooley and Tukey introduces the Fast Fourier

algorithm in 1965, to transform, to significantly

reduce the complexity of computing discrete Fourier

transform a divide and conquer approach is used in

the algorithm which is nothing but a Fast Fourier

Transform.The computational complexity is reduced

in FFT algorithm compared to that of DFT algorithm.

FFT method, we have no input in the range of a DFT

(NlogN) to be able to count. However, for many

years after its introduction, the development of some

of the technology, "Cooley-Tukey algorithm" was

held, and the theoretical aspects of the research FFT

algorithm, or FFT analysis focused on the details of

the proposals.

Cooley-Tukey Algorithm:

Cooley-Tukey algorithm, as introduced, accounting

(both additions and multiplications) to calculate the

discrete Fourier transform to reduce the need to use

of divide and conquer approach. The Cooley-Tukey

algorithm, outlined here, radix-2 D (decimation-in-

time), and for a simple FFT algorithm serves as our

base. This FFT algorithm introduces the butterfly

architecture. To calculate an N point FFT requires

N/2 butterflies.

The basic steps in the FFT algorithm:

 Decimate - two (i.e. source 2) of DFT to create

small, the split of the original input into set of

even and odd parts.(Divides the the samples as

even and odd).

 Multiply each element of the source of the unity

of the coalition (called twiddle factors)W.

 Butterfly - (see figure 1), the other with a small

element of the corresponding and add each

element of each of the DFT. Repeat procedure

for N=4,8 ….

Fig.1. Recursive process of radix 2 DIT-FFT

Existing systems in FFT:

An FFT processor chip was originally designed. This

chip is specifically used in Orthogonal frequency

division multiplexing. OFDM FFT processor is the

focal point of both the transmitter and receiver. FFT

high performance, combined with low energy

consumption rate, and which has high- throughput

approach to the implementation of an ASIC is

computationally demanding operation. Which is

computationally intensive requires less number of

additions and subtractions.

Architecture:

The FFT and IFFT has the property that, if FFT

(Re(xi)+ jIm(xi)) = Re(Xi)+ jIm(Xi) and

 IFFT(Re(Xi)+ jIm(Xi)) = Re(xi)+ jIm(xi)

where xi and Xi are N words long sequences of

complex valued, samples and sub-carriers

respectively, then 1/N * FFT(Im(Xi)+ jRe(Xi)) =

Im(xi)+ jRe(xi). Therefore, it is necessary not only to

discuss the implementation of the FFT equalizer.

To calculate the inverse transform, the real and

imaginary part of the input and output are changed. N

1 / n scaling a power of two, so that the right binary

word log2 (N) bits in the same switch. Even simpler,

binary point left log2 (N) bits is shifted to remember.

If ever, did not show up to change a bit, depending on

how it is used, the output from IFFT, is required.

Fig.2 : A radix-2 DIF butterfly (a) and a radix-2 DIT

butterfly (b), where W is the twiddle factor.

FFT algorithm is the basic building block can be

realized with butterfly operation. Each butterfly

performs addition and multiplication operations along

with the twiddle factor The forward and inverse

operations are possible with FFT known as DIT FFT

and DIF FFT Decimation in time and decimation in

frequency respectively, the two are shown in figure 2.

DIF is the difference between the before and after the

addition or subtraction and multiplication of the

featured twiddle factor is in place. FFT based on the

divide and conquer and due to the input range is N R

source, known as the point length N = RP, so, and p

positive integer is the most effective. An N-point

FFT, to count the butterflies are connected to the p

stages.

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144850 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 59

The map is an example of a hardware-point radix-

made N = 16 -2 DIF FFT is shown in figure 2(a). The

input data, x (N), the output of data occurs in a

random order, however, X (N) to return to observe it.

Reversed the order of the data generated to re-order

bit is known and described by the figure. figure 2(b)

FFT bit reversed order, which will result in the

reshaping of the input and output, so it is possible to

form the natural order. figure 2(a), moving vertically,

parallel data paths and reconfigure the product to the

natural order, the way to control cross connections

while, and think. As well as all the arrows in figure

2(b), if one turned around from the FFT, DIF FFT is

performed instead. So the decimation in frequency

and decimation in time operations are performed and

vice versa.

Fig.3: N = 16-point radix-22 DIF FFT algorithm

III.PROPOSED BUTTERFLY ARCHITECTURE

In this section we presents a butterfly architecture

using redundant Floating Point arithmetic, which is

useful for FP FFT coprocessors and contributes to the

digital signal processing applications and also in

Orthogonal frequency division multiplexing

applications. Although there are other existing

algorithms works on the use of redundant

Floating point number systems, which are not

optimized and which requires more delay. In

butterfly architecture in which both redundant FP

multiplier and adder are required. The novelties

FDPA and BSD adder techniques used in the

proposed design include the following

Fig.4: FFT butterfly architecture with expanded

complex numbers

1) All the significants in the design of Floating

point butterfly are represented in binary signed-

digit (BSD) format and the corresponding carry-

limited(which avoids carry propagation from one

stage to next stage) adder is designed.

2) Design of the FP constant multipliers for

operands with BSD significant.

3) Design of FP the three-operand adders for

operands with BSD significant.

4) Design of the Floating point fused-dot-

product-add (FDPA) units (i.e., AB ± CD ± E) for

operands with the BSD significant format.

Fig.5: BSD adder (two-digit slice)

Fig.6: Generation of the ith PP

The FFT could be implemented in hardware based

upon an efficient algorithm in which the N -input

FFT computation is simplified to the computation of

two (N /2)-input FFT. Continuing this decomposition

of FFT that is divide and conquer leads to 2-input

FFT block, also known as butterfly unit. The

proposed butterfly unit is actually a complex fused-

multiply– add with FP operands. Expanding the

complex numbers, figure 4 shows the required

modules. According to figure 5 and figure 6, the

constituent operations for butterfly unit are a

dot-product (e.g. Bre Wim + Bim Wre) followed

by an addition/subtraction along with the twiddle

factors which leads to the proposed FDPA

operation(e.g., Bre Wim + Bim Wre + Aim).

Implementat ion details of FDPA, over FP operands.

The exponents of all the inputs are

added(E1+E2+….) and represented in its two’s

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144850 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 60

complement (after subtracting the bias), while the

significant of Are, Aim, Bre, and Bim are represented

in BSD.Which perform XOR operation between the

MSB to get the Sign of the resultant number. Within

this representation every binary position takes values

of {−1, 0, 1} represented by one negative-weighted

bit (negabit) and one positive-weighted bit (posibit).

Proposed Redundant Floating-Point Multiplier:

The proposed multiplier, is similar to that of other

parallel multipliers, consists of two major steps,

namely, partial product generation (PPG) and Partial

product reduction (PPR). However, contrary to the

conventional multipliers, the proposed multiplier

keeps the product in redundant format and hence

there is no need for the final carry-propagating adder.

There is no carry propagation from one stage to the

next stage. The exponents of the input operands are

taken care of in the same way as is done in the

conventional FP multipliers , however, normalization,

deletion and rounding are left to be done in the next

block of the butterfly architecture (i.e., three-operand

adder).

1.Partial Product Generation: The Partial product

generator step of the proposed multiplier is

completely different from that of the conventional

multiplier one because of the representation of the

input operand bits (B, W , Br, W r).Moreover, given

that Wre and Wim are constants, the multiplications

in figure 8(over significant) can be computed through

a series of shifters , adders.

Fig.7: Digits to three-operand adder.

2.Partial Product Reduction: The main advantage of

the PPR step is the proposed in this section in which

the carry-limited addition over the operands

represented in BSD format. This carry-limited

addition circuitry is shown in fig.5(two-digit slice).

Since each PP (PPi) is (n + 1)-digit (n ,..., 0) which

is either B (n − 1, ..., 0) or 2B (n ,..., 1), the length

of the final product may be more than 2n.This is

possible by use of BSD adders in the

intermediate stages.

Fig.8: Proposed redundant FP multiplier

Assuming that the sign-embedded significant bits

of inputs A and B (24 bits) are represented in BSD,

while that of W is represented in modified Booth

encoding technique (25 bits), the last PP has 24-

(binary position) width (instead of 25), given that the

most significant bit of W is always 1.The reduction

of the PPs is done in four levels using 12

BSD adders .Given that B is in ±[1, 2) and in [1, 2),

the final product is i±[1, 4) and would fit into 48

binary position (47…0). Consequently, positions 45

down to 0 are fractions. Similar to standard binary

representation, Guard (G) and Round (R) positions

are sufficient for correct rounding(Rounding is used

to place the decimal point). Therefore, only 23 + 2

fractional binary positions of the final product

are required to guarantee the final error

<2−23. Selecting 25 binary positions out of 46

fractional positions of the final product dismisses

positions 0 to 20. However, the next step addition may

produce carries to G and R positions. Nevertheless,

because of the carry-limited BSD addition, contrary

to standard binary addition, only we consider the

positions 20 and 19 may produce such carries.

In overall, positions 0 to 18 of the final product are

not useful and hence a simpler PPR tree is possible.

Fig. 4 shows the required digits passed to the three-

operand adder. Figure 8 shows the proposed

redundant FP multiplier.

Proposed Redundant Floating-Point Three-Operand

Adder:

The straightforward approach to perform a

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144850 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 61

three-operand FP addition is to concatenate two

FP adders which leads to high latency, power,

and area consumption. A better way is to use fused

three-operand FP adders .In the proposed three-

operand FP adder, a new alignment block is

implemented and CSA–CPA are replaced by the BSD

adders (Figure 5). Moreover, sign logic is eliminated.

The bigger exponent between EX and EY (called

EBig) is deter- mined using a binary subtractor (6 =

EX − EY); and the significants of the operand

with smaller exponent (X or Y) is shifted "6"-bit

to the right. Next, a BSD adder computes the

addition result (SUM = X + Y), using the aligned

X and Y . Adding third operand (i.e., SUM + A)

requires another alignment. This second alignment is

done in a different way so as to reduce the critical

path delay of the three-operand adder. First, the value

of 6A = EBig − EA + 30 is computed which shows

the amount of right shifts required to be performed

on extended (with the initial position of 30 digits

shifted to left). Figure 8 shows the alignment of

length of bits is implemented in the proposed three-

operand FP adder. Next, a BSD adder adds the

aligned third significant digit (58-digit) to SUM (33-

digit) is generated from the first BSD adder.

Since the input operands have different number of

digits, this adder is a simplified 58-digit BSD adder.

Next steps are normalization and rounding, which are

done using conventional methods for BSD

representation . It is to be denoted that of the leading

zero detection (LZD) block could be replaced by a

four-input leading-zero-anticipation for speed up

the process but which requires the of more area

occupation. The other modification would replace our

single path architecture with the dual path to sacrifice

area and speed.

Fig.9: Proposed FP three-operand addition

IV. SIMULATION RESULTS

Fig.10: simulation result

Fig.11: Schematic of proposed method

Fig 12: Technology schematic of proposed method

V. CONCLUSION

In this paper we have here in the processor FFT and

FFT butterfly architecture, reading, writing and

execution addresses. But the high-risk in the area,

the advantage is which is faster than the previous

works, we , proposed high-speed FP butterfly

architecture. The reason behind this is the speed of

development is twofold: FP butterfly eliminates the

carry propagation from one stage to another stage

between the significands and it is possible by 1) BSD

representation, and 2) The use of proposed new

FDPA unit. FP butterfly multiplications and additions

need to be combined with the single FP unit.Thus,

high-speed additional LZD, normalization , deleting

and rounding can be achieved by FP units.So,the

overall delay is reduced. The next research FP adder

three dual line method applied to the structure and

other unnecessary FP. FP representations may be

planning on using for the efficient area utilization.

Moreover, the design stage of the abolition of the use

© October 2017 | IJIRT | Volume 4 Issue 5 | ISSN: 2349-6002

IJIRT 144850 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 62

of improved techniques (ie, repeating LZD,

normalize,deletion and rounding) of the estimated

costs, however, lead to faster architectures but

requires more area.

REFERENCES

[1] E. E. Swartzlander, Jr., and H. H. Saleh, “FFT

implementation withfused floating-point

operations,” IEEE Trans. Comput., vol. 61, no.

2,pp. 284–288, Feb. 2012.

[2] J. Sohn and E. E. Swartzlander, Jr., “Improved

architectures for afloating-point fused dot

product unit,” in Proc. IEEE 21st Symp.

Comput.Arithmetic, Apr. 2013, pp. 41–48.

[3] IEEE Standard for Floating-Point Arithmetic,

IEEE Standard 754-2008,Aug. 2008, pp. 1–58.

[4] B. Parhami, Computer Arithmetic: Algorithms

and Hardware Designs,2nd ed. New York, NY,

USA: Oxford Univ. Press, 2010.

[5] J. W. Cooley and J. W. Tukey, “An algorithm for

the machine calculationof complex Fourier

series,” Math. Comput., vol. 19, no. 90, pp. 297–

301,Apr. 1965.

[6] A. F. Tenca, “Multi-operand floating-point

addition,” in Proc. 19th IEEESymp. Comput.

Arithmetic, Jun. 2009, pp. 161–168.

[7] Y. Tao, G. Deyuan, F. Xiaoya, and R.

Xianglong, “Three-operand floating-point

adder,” in Proc. 12
th

 IEEE Int. Conf. Comput.

Inf. Technol.,Oct. 2012, pp. 192–196.

[8] A. M. Nielsen, D. W. Matula, C. N. Lyu, and G.

Even, “An IEEE compliant floating-point adder

that conforms with the pipeline packet

forwarding paradigm,” IEEE Trans. Comput.,

vol. 49, no. 1, pp. 33–47,Jan. 2000.

[9] P. Kornerup, “Correcting the normalization shift

of redundant binary representations,” IEEE

Trans. Comput., vol. 58, no. 10, pp. 1435–

1439,Oct. 2009.

[10] 90 nm CMOS090 Design Platform,

STMicroelectronics, Geneva, Switzerland, 2007.

[11]J. H. Min, S.-W. Kim, and E. E. Swartzlander,

Jr., “A floating-point fused FFT butterfly

arithmetic unit with merged multiple-constant

multipliers,” in Proc. 45th Asilomar Conf.

Signals, Syst. Comput., Nov

