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Abstract- Two architectures for modulo 2n+1 adders are 

introduced in this paper. The first one is built around a 

sparse carry computation unit that computes only some 

of the carries of the modulo 2n+1 addition. This sparse 

approach is enabled by the introduction of the inverted 

circular idem potency property of the parallel -prefix 

carry operator and its regularity and area efficiency are 

further enhanced by the introduction of a new prefix 

operator. The resulting diminished-1 adders can be 

implemented in smaller area and consume less power 

compared to all earlier proposals, while maintaining a 

high Operation speed. The second architecture unifies 

the design of modulo 2n-1 adders. It is shown that 

modulo 2n-1 adders can be easily derived by 

straightforward modifications of modulo 2n-1 adders 

with minor hardware overhead. 

 

I. INTRODUCTION 

Arithmetic modulo 2
n
+1 has found applicability in a 

variety of fields ranging from pseudorandom number 

generation and cryptography , up to convolution 

computations without round-off errors . Also, modulo 

2
n
+1 operators are commonly included in residue 

number system (RNS) applications. The RNS is an 

arithmetic system which decomposes a number into 

parts (residues) and performs arithmetic operations in 

parallel for each residue without the need of carry 

propagation among them, leading to significant 

speedup over the corresponding binary operations. 

RNS is well suited to applications that are rich of 

addition/subtraction and multiplication operations 

and has been adopted in the design of digital signal 

processors , FIR filters, and communication 

components, offering in several cases apart from 

enhanced operation speed, low-power characteristics. 

 

II.PARALLEL-PREFIX ADDITION BASICS 

 

Suppose that A =An-1,An-2 . . .A0 and B=Bn-1,Bn-2 

. . .B0 represent the two numbers to be added and S= 

Sn-1, Sn-2 . . . S0 denotes their sum. An adder can be 

considered as a three-stage circuit. The pre 

processing stage computes the carry-generate bits Gi, 

the carry-propagate bits Pi, and the half-sum bits Hi, 

for every i, 0  ≤  i  ≤  n-1, according to 

  Gi=Ai .Bi,  Pi=Ai+Bi  , Hi=AiBi 

Where . , + and denote logical AND, OR, and 

exclusive-OR, respectively. The second stage of the 

adder, here after called the carry computation unit, 

computes the carry signals Ci, for 0≤ i ≤n-1using the 

carry generate and carry propagate bits Gi and Pi. 

The third stage computes the sum bits according  to  

Si=HiCi-1.  

Carry computation is transformed into a parallel 

prefix problem using the „‟ operator, which 

associates pairs of generate and propagate signals and 

was defined as 

(G, P)  (G‟, P‟)=(G+P.G‟ ,P.P‟). 

In a series of associations of consecutive 

generate/propagate pairs(G,P),the notation (Gk:j : Pk:j), 

with k > j, is used to denote the group 

generate/propagate term produced out of bits  k, k -1, 

. . . , j, that is, 

(GK:J,PK:J) = (GK , PK)  (GK-1,PK-1) (GJ,PJ). 

Since every carry Ci=Gi:0, a number of algorithms 

have been introduced for computing all the carries 

using only  operators. Fig. 1 presents the most well-

known approaches for the design of an 8-bit adder, 

while Fig. 2 depicts the logic-level implementation of 

the basic cells used throughout the paper. 

For large word lengths, the design of sparse parallel 

prefix adders is preferred, since the wiring and area 

of the design are significantly reduced without 

sacrificing delay. The design of sparse adders relies 

on the use of a sparse parallel-prefix carry 

computation unit and carry-select (CS) blocks. Only 

the carries at the boundaries of the carry-select blocks 

are computed, saving considerable amount of area in  

the carry-computation unit. The carry select block 

computes two sets of sum bits corresponding to the 

two possible values of the incoming carry. When the 

actual carry is computed, it selects the correct sum 

without any delay overhead. 
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Fig1.Kogge-Stone Adder   

 
Fig2: Ladner-Fischer Adder

 
Fig3. Knowels Adder 

 

SYNTHESIS RESULTS: 
 AREA(µm2) DELAY   (ns) 

KOGGE-STONE 821 305 

LADNER-FISCHER 829 307 

KNOWLES 847 278 

 

CONCLUSION 

All the Parallel-Prefix adders gives less delay and 

area specifications by synthesis . 

 

REFERENCES 

 

[1] X. Lai and J.L. Massey, “A Proposal for a New 

Block EncryptionStandard,”EUROCRYPT, 

D.W. Davies, ed., vol. 547, pp. 389-404, 

Springer, 1991. 

[2] R. Zimmermann et al., “A 177 Mb/s VLSI 

Implementation of the International Data 

Encryption Algorithm,” IEEE J. Solid-State 

Circuits, vol. 29, no. 3, pp. 303-307, Mar. 1994. 

[3] H. Nozaki et al.,“Implementation of RSA 

Algorithm Based on RNS Montgomery 

Multiplication,” Proc. Third Int‟l Workshop 

Cryptographic Hardware and Embedded 

Systems, pp. 364-376, 2001. 

[4] Y. Morikawa, H. Hamada, and K. Nagayasu, 

“Hardware Realisation of High Speed Butterfly 

for the Maximal Length Fermat Number 

Transform,” Trans. IECE, vol. J66-D, no. 1, pp. 

81-88, 1983. 

[5] M. Benaissa, S.S. Dlay, and A.G.J. Holt, 

“CMOS VLSI Design of a High-Speed Fermat 

Number Transform Based Convolver/Correlator 

Using Three-Input Adders,” Proc. IEE, vol. 138, 

no. 2, pp. 182-190, Apr. 1991. 

[6] V.K. Zadiraka and E.A. Melekhina, “Computer 

Implementation of Efficient Discrete-

Convolution Algorithms,” Cybernetics and 

Systems Analysis, vol. 30, no. 1, pp. 106-114, 

Jan. 1994. 

[7] M.A. Soderstrand et al., Residue Number System 

Arithmetic: Modern Applications in Digital 

Signal Processing. IEEE Press, 1986. 

[8] P.V.A. Mohan, Residue Number Systems: 

Algorithms and Architectures. Springer-Verlag, 

2002. 


