One Step Evolution of Any Positive Real Number

Ramesh Chandra Bagadi
Associate Professor \& Head, Department of Civil Engineering, Sanketika Vidya Parishad Engineering College, Visakhapatnam 41, India

Abstract

In this research investigation, the author has detailed the Theory of One Step Evolution of Any Real Positive Number. Such a theory of One Step Evolution Of A Positive Real Number can be successfully used in Forecasting the next term of a given Sequence of numbers.

Index Terms- Mathematical Evolution

INTRODUCTION

A detailed description of some types of mathematical theories of evolution can be found in [1].
ONE STEP EVOLUTION OF A PRIME NUMBER (OVERVIEW)

By One Step Evolution of ${ }^{j}$, we mean, if ${ }_{j}$ is the $l^{\text {th }}$ Prime number then we consider the $(l+1)^{\text {th }}$ Prime number as the One Step Evolved version of p_{j}.
ESTABLISHMENT OF THE THEORY OF ONE STEP EVOUTION OF ANY POSITIVE REAL NUMBER

Part 1:
Given a positive integer ' S, we write it as $s=p_{1}-\delta_{1}$ where $p_{1} \quad$ is the smallest Prime number greater than S and δ_{1} is some positive integer. If δ_{1} does not happen to be a prime, we then write δ_{1} as $\delta_{1}=p_{2}-\delta_{2}$ where p_{2} is the smallest Prime number greater than δ_{1} and δ_{2} is some positive integer. Now, again if δ_{2} does not happen to be a prime, we then write δ_{2} as $\delta_{2}=p_{3}-\delta_{3}$ where p_{3} is the smallest Prime number greater than δ_{2}
and δ_{3} is some positive integer. We keep following this procedure till the δ_{k} (for some k) is either Prime or is 1 . We can now write S as
$s=p_{1}-\delta_{1}$
$s=p_{1}-\left(p_{2}-\delta_{2}\right)$
$s=p_{1}-\left(p_{2}-\left(p_{3}-\delta_{3}\right)\right)$
$s=p_{1}-\left(p_{2}-\left(p_{3}-\left(\ldots .\left(p_{k}-\delta_{k}\right) \ldots\right)\right)\right)$
We now consider One Step Evolution of S as
$E^{1}\{s\}=E^{1}\left\{p_{1}\right\}-\left(E^{1}\left\{p_{2}\right\}-\left(E^{1}\left\{p_{3}\right\}-\left(\ldots . .\left(E^{1}\left\{p_{k}\right\}-E^{1}\left\{\delta_{k}\right\}\right) \ldots\right)\right)\right)$
Where E^{1} is the One Step Evolution Operator

Part 2:

Given a positive integer ' S ', we write it as $s=p_{1}+\delta_{1}$ where $p_{1} \quad$ is the largest Prime number smaller than S and δ_{1} is some positive integer. If δ_{1} does not happen to be a prime, we then write δ_{1} as $\delta_{1}=p_{2}+\delta_{2}$ where p_{2} is the largest Prime number smaller than δ_{1} and δ_{2} is some positive integer. Now, again if δ_{2} does not happen to be a prime, we then write δ_{2} as $\delta_{2}=p_{3}+\delta_{3}$ where p_{3} is the largest Prime number smaller than δ_{2} and δ_{3} is some positive integer. We keep following this procedure till the δ_{k} (for some k) is either Prime or is 1 . We can now write ${ }^{S}$ as
$s=p_{1}+\delta_{1}$
$s=p_{1}+\left(p_{2}+\delta_{2}\right)$
$s=p_{1}+\left(p_{2}+\left(p_{3}+\delta_{3}\right)\right)$
$s=p_{1}+\left(p_{2}+\left(p_{3}+\left(\ldots .\left(p_{k}+\delta_{k}\right) \ldots\right)\right)\right)$

We now consider One Step Evolution of S as $E^{1}\{s\}=E^{1}\left\{p_{1}\right\}+\left(E^{1}\left\{p_{2}\right\}+\left(E^{1}\left\{p_{3}\right\}+\left(\ldots . .\left(E^{1}\left\{p_{k}\right\}+E^{1}\left\{\delta_{k}\right\}\right) \ldots\right)\right)\right)$ where E^{1} is the One Step Evolution Operator. Also, the One Step Evolution of any positive
 positive integers.

Example 1 (Part1),
Considering the number 56
We can write it as
$56=59-2$
$E^{1}\{56\}=E^{1}\{59\}-E^{1}\{2\}$
$E^{1}\{56\}=61-3=58$
Since 56 lies in between the Primes 53 and 59, and $E^{1}\{53\}=59$
and $E^{1}\{59\}=61$
$E^{1}\{56\}$ must be less than 61 .

Example 1 (Part 2),
Considering the number 56
We can write it as
$56=53+3$
$E^{1}\{56\}=E^{1}\{53\}+E^{1}\{3\}$
$E^{1}\{56\}=59+5=64$
Since 56 lies in between the Primes 53 and 59, and $E^{1}\{53\}=59$
and $E^{1}\{59\}=61$
$E^{1}\{56\}$ must be less than 61 . However, in this case it is 64 which is greater than 61 . Hence, we prefer Part 1 for finding the One Step Evolution of 56.

Example 2 (Part 1)
Considering the number 72
We can write it as

$$
\begin{aligned}
& 72=73-1 \\
& E^{1}\{72\}=E^{1}\{73\}-E^{1}\{1\}
\end{aligned}
$$

$E^{1}\{72\}=79-2=77$
Since 72 lies in between the Primes 71 and 73 , and
$E^{1}\{71\}=73$
And $E^{1}\{73\}=79$
$E^{1}\{72\}$ Must be less than 79 .
Note: We consider $E^{1}\{1\}=2$.

Example 2 (Part 2),
Considering the number 72
We can write it as
$72=71+1$
$E^{1}\{72\}=E^{1}\{71\}+E^{1}\{1\}$
$E^{1}\{72\}=73+2=75$
Since 72 lies in between the Primes 71 and 73 , and
$E^{1}\{71\}=73$
and $E^{1}\{73\}=79$
$E^{1}\{72\}$ must be less than 79. However, in this case it is 75 which is less than 79 . Since 75 is a better solution than 77 (for being less than 77, see Example 2 Part 1), we prefer Part 2 for finding the One Step Evolution of 72 .

Note: We consider $E^{1}\{1\}=2$.

CONCLUSIONS

One can note that the afore-detailed theory of One Step Evolution of A Positive Real Number can be successfully used in Forecasting the next term of a given Sequence of numbers.

ACKNOWLEDGMENT

The author would like to express his deepest gratitude to all the members of his Loving Family, Respectable Teachers, En-Dear-Able Friends, Inspiring Social Figures, Highly Esteemed Professors, Reverence Deserving Deities that have deeply contributed in the formation of the necessary scientific temperament and the social and personal outlook of the author that has resulted in the
conception, preparation and authoring of this research manuscript document.
The author pays his sincere tribute to all those dedicated and sincere folk of academia, industry and elsewhere who have sacrificed a lot of their structured leisure time and have painstakingly authored treatises on Science, Engineering, Mathematics, Art and Philosophy covering all the developments from time immemorial until then, in their supreme works. It is standing on such treasure of foundation of knowledge, aided with an iota of personal god-gifted creativity that the author bases his foray of wild excursions into the understanding of natural phenomenon and forms new premises and scientifically surmises plausible laws. The author strongly reiterates his sense of gratitude and infinite indebtedness to all such 'Philosophical Statesmen' that are evergreen personal librarians of Science, Art, Mathematics and Philosophy.

REFERENCES

[1] Pearson, Karl. Contributions to the Mathematical Theory of Evolution, 1894 Pearson, Transactions Royal Society http://www.quantresearch.info/1894_Pearson_Tr ansactions_Royal_Society.p

