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Abstract- This paper based on a new shared multiplier 

scheduling scheme (SMSS) for area-efficient fast 

Fourier transform (FFT)/inverse FFT processors. SMSS 

can significantly reduce the total number of complex 

multipliers up to 28%. The proposed mixed-radix 

multipath delay commutator processors can 

support128/256 and 256/512-point FFTs using SMSS. 

The proposed processors have been designed and 

implemented with 90-nm CMOS technology, which can 

reduce the total hardware complexity by 20%. The 

proposed processors having eight-parallel data paths 

can achieve a high throughput rate up to 27.5 GS/s at 

430 MHz. In addition, the proposed processors can 

support any FFT size using additional stages. 

 

Index Terms- Fast Fourier transform (FFT), mixed-

radix multipath delay commutator (MRMDC) 

 

1. INTRODUCTION FAST FOURIER 

TRANSFORMS (FFT)  

 

The Fourier transform is the method of changing time 

representation to frequency representation. The 

discrete Fourier transform (DFT) is a one of the 

Fourier transform, used in Fourier analysis. It 

transforms one function that is time into another that 

is frequency, so as to get discrete signals, hence 

called the DFT, of the original function. The DFT of 

a given sequence x[n] can be computed using the 

formula  

 ( )  ∑  (n)  
  

n  

n  
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Where, WN is twiddle factor. Twiddle factors referred 

to as the root of- unity complex multiplicative 

constants in the butterfly operations of the FFT 

algorithm, used to recursively combine smaller 

discrete Fourier transforms. Practically, at the input 

there is time domain so only real values should be 

present But for our convenience we apply input data 

sequence x(n) having both real and imaginary term 

We observe that for each value of k, direct 

computation of X(k) involves N complex 

multiplications (4N real multiplications) and N-1 

complex additions (4N-2 real additions). 

Consequently, to compute all N values of the DFT 

requires N 2 complex multiplications and N 2-N 

complex additions. 

The Discrete Fourier transform is used to produce 

frequency analysis of discrete non periodic signals. 

The FFT is another method of achieving the same 

result, but with less overhead involved in the 

calculations. Transforms basically convert a function 

from one domain to another with no loss of 

information. Fourier Transform converts a function 

from the time (or spatial) domain to the frequency 

domain. The mathematical formula used for the 

Fourier transform is as follows  

 ( )  
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FFT radix-2 algorithm the number of complex 

multiplications and additions will be reduced to (N/2) 

log2N and Nlog2N to compute the DFT of a given 

complex x[n]. Hence in this project the Decimation in 

Time FFT radix-2 algorithm is implemented to 

compute the DFT of a sequence. 

In summary, the comparison of the computation load 

is listed as following:  
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2 4 2 1 2 

8 64 56 12 24 

32 1024 922 80 160 

64 4096 4022 192 384 

128 16384 16256 448 896 

2
10 

1048576 1047522 5120 10240 

2
20    12    12

    7
      7

 

 

In general, an N-point FFT (a radix-2 FFT and N= 

2") is evaluated by The radix-2 algorithms are the 

simplest FFT algorithms. The decimation-in-time 

(DIT) radix-2 FFT recursively partitions a DFT into 

two half-length DFTs of the even indexed and odd-

indexed time samples. The outputs of these shorter 

FFTs are reused to compute many outputs, thus 

greatly reducing the total computational cost. The 

radix-2 decimation-in-time and decimation-in-

frequency fast Fourier transforms (FFTs) are the 

simplest FFT algorithms. Like all FFTs, they gain 

their speed by reusing the results of smaller, 

intermediate computations to compute multiple DFT 

frequency outputs. 

 

2. SYSTEM DESIGN: EXISTING SYSTEM 

 

In this section, we show the existing 128/256-point 

MRMDC FFT/IFFT processor to derive known FFT 

architectures in general. Fig. 1 shows the eight-

parallel 128/256-point FFT/IFFT architecture, which 

consists of BUs, delay commutators, and twiddle 

factor multipliers. The input sequence of the ith 

OFDM symbol is  split in eight-parallel data paths, 

where j stands for the OFDM symbol index. In the 

first stage, the radix-2/4 BU can perform one radix-4 

or two radix-2 operations to compute the 128- and 

256-point FFTs. The second and third stages employ 

a modified radix-8 BU proposed which is suitable for 

the pipelined structure. 

 
Fig.1. Eight-parallel 128/256-point MRMDC 

FFT/IFFT processor 

The operation of the FFT or IFFT is selected by the 

control signal, sel_FFT/IFFT. To perform the IFFT 

computation, the signs of the imaginary parts in the 

input and output sequences are changed using 

complex conjugate operations. 

The input and output sequences have specified 

orders, as shown in Fig. 1. There are three stages 

based on the radix-2, radix-4, and modified radix-8 

algorithms for the 128/256-point FFT. The input 

sequence of the processor is split into eight streams 

for eight data paths, as shown at the bottom of Fig. 1, 

and can be expressed as follows  

                                   in1(k, p) = x(n) 

where in1(k, p) represents the kth input data for the 

pth data path of the first stage. k and p are denoted as 

follows: 

                         n = k × 8 + p, p = 0, 1. . . 7.  

 

A. First Stage for 256-Point FFT 

Even though Rabiner and Gold [37] did not show the 

MRMDC architecture, the architecture shown in Fig. 

2 can be inferred from the MDC architecture. Fig. 2 

shows the first and second stages of the existing 256-

point MRMDC architecture which are represented by 

the dotted box shown in Fig. 1. The first and second 

stages consist of the input buffer, radix- 2/4 BU, 
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modified radix-8 BU in [36], and commutator. The 

existing radix-8 BU in [38] consists of seven phases 

and requires a long critical path because the complex 

multipliers are located in two phases; hence, it has 

the long critical path delay that is 2tmul + 3tadd, 

where tmul and tadd are the delays of the complex 

multiplier and adder, respectively. To reduce the 

critical path, the  odified radix-8 BU proposed, is 

more suitable for efficient implementation. Reference 

[36] has incorporated twiddle factors and adder tree 

matrices into a single phase of calculation. In the 

modified radix-8 BU, the first phase has 11 complex 

multipliers, and the other three phases consist of 

adder trees, and thus, the modified radix-8 BU can 

have the critical path delay of tmul + 3tadd. 

Therefore, the modified radix-8 BU can reduce the 

critical path delay by tmul. The FFT/IFFT processor 

in Fig. 1 also uses the modified radix-8 BUs used to 

implement high-speed FFT processors. 

In the existing MRMDC architecture [37] in Fig. 2, 

the input sequence of the zeroth data path is split into 

eight data streams from A to H. The four input 

sequences of the upper BU include streams A, C, E, 

and G, and those of the lower BU include streams B, 

D, F, and H. In Fig. 2, indexed input samples in the 

horizontal arrive at the same stream at different time 

instants, whereas input samples in the vertical arrive 

at the same time from different streams. All the data 

streams are delayed by the delay elements, Di, to 

maintain the proper cycles, where i is the size of the 

delay element. For the first four cycles from t0 to t3, 

the input stream A of the zeroth data path, x(0), x(8), 

x(16), and x(24), is fed and stored in D28. The input 

stream B is fed and stored in D24 for the next four 

cycles. Every four cycles, the input sequence is  

switched to the next stream. The input samples in the 

vertical arrived at the same time from different 

streams in the upper and lower BUs in Fig. 2 can be 

formulated as in1,u (m) = {x(8m), x(8m + 64), x(8m 

+ 128), x(8m + 192)} in1,l (m) = {x(8m + 32), x(8m 

+ 96), x(8m + 160), x(8m + 224)} (10) 

where m is from 0 to 3. in1,u(m) and in1,l (m) are the 

input samples in the upper and lower BUs, 

respectively. m is 0 when the computation period 

begins at t28, and m is incremented by one for each 

cycle. For example, at t28, m is 0, and then, the input 

data for the upper BU consist of {x(0), x(64), x(128), 

x(192)}, and the input data for the lower BU consist 

of {x(32), x(96), x(160), x(224)}. In the next cycle, 

t29, m becomes 1, and the input data for the upper 

BU are {x(8), x(72), x(136), x(200)}, and those of the 

lower BU are {x(40), x(104), x(168), x(232)}. As 

shown in Fig. 2, the FFT processor using eight-

parallel data paths takes 28 cycles for reordering the 

radix-2/4 butterfly computation during the idle period 

from t0 to t27. After the idle period, the radix-2/4 BU 

is active during the computation period from t28 to 

t31, as shown in Fig. 2. 

 
Fig. 2. Existing 256-point FFT structure using the 

modified radix-8 BU

 

Fig. 3. First stage of the 128-point MRMDC FFT 

 

B. First Stage for 128-Point FFT 

Fig. 3 shows the first stage of the existing 128-point 

MRMDC architecture, which is represented by the 

dotted box shown in Fig. 1. The processor can 

support the 128-point FFT/IFFT in a similar manner 
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to compute the 256-point FFT described in Section 

III-A. In the existing MRMDC, the input sequence of 

the eight parallel data paths is split into eight data 

streams. Further, each data stream is delayed by the 

delay elements. The subsequences in the vertical 

arrived at the same time from different streams in the 

upper and lower BUs in Fig. 3 can be formulated as 

in1,u (m)={x(8m), x(8m+32), x(8m+64), x(8m+96)} 

in1,l (m)={x(8m+16), x(8m+48), x(8m+80), x(8m + 

112)} (11) where m is 0 or 1. in1,u(m) and in1,l(m) 

are the input samples in the upper and lower BUs, 

respectively. In contrast to the 256-point FFT in Fig. 

2, the number of delay elements for input reordering 

in the 128-point FFT decreases by half. To reorder 

the input sequences for the first stage, the existing 

structure in Fig. 3 takes 14 cycles using D2, D4, D6, 

D8, D10, D12, and D14 during the idle period and 

two cycles during the computation period when the 

FFT size is 128. Therefore, the first stage of the 

existing processor requires 16 cycles. 

 

Proposed System 

This section proposes novel eight-parallel MRMDC 

FFT/IFFT processors that offer a high throughput and 

low hardware complexity using SMSS. In contrast 

with the existing processor [37], the first stage uses 

the shared multipliers and the second stage requires 

the modified radix-8 BUs without complex 

multipliers (w/o mul), as shown in Fig. 4. 

 

 

 
 

 
Fig. 4. Proposed first stage of the zeroth data path 

for the 256-point FFT. (a) Reducing the number of 

butterflies (Type I). (b) Reducing the number of 

complex multipliers (Type II). (c) Architecture 

employing the scheduling scheme (Type III). 

 

A. First Stage for 256-Point FFT 

Fig. 4 shows three proposed architecture types. Type 

I in Fig. 4(a) can reduce the number of radix-2/4 BUs 

from two in Fig. 2 to one in the first stage without 

additional clock cycles. Type II in Fig. 4(b) uses 

SMSS, as described in the next paragraphs, and thus, 

it can reduce the number of complex multipliers from 

11 to 10 compared with the existing architecture. In 

addition, Type III shown in Fig. 4(c) uses SMSS in 

Type II and one radix-2/4 BU in Type I, and it can 

reduce the number of complex multipliers from 11 to 

5 in the second stage. 
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In the Type I architecture shown in Fig. 4(a), the 

input sequence of the zeroth data path is split into 

four data streams A, B, C, and D. For the first eight 

cycles, the input stream A of the zeroth data path 

[i.e., x(0), x(8), . . . , x(56)] is fed and stored in D24. 

For the next eight cycles, the input stream B is fed 

and stored in D16. Unlike the existing architecture in 

Fig. 2, where the input sequence is switched to the 

next stream every four cycles, the input sequence of 

Type I is switched to the next stream every eight 

cycles. Type I takes 24 cycles to reorder the input 

data of the radix-2/4 BU and eight cycles to perform 

the radix-2/4 operations shown in the bottom of Fig. 

4(a). The total computation in the first stage for one 

symbol can be completed in 32 cycles. Therefore, 

both the existing architecture shown in Fig. 2, and 

Type I require the same number of clock cycles, i.e., 

32 cycles. Therefore, the proposed FFT/IFFT 

processor in the first stage can reduce the radix-2/4 

BUs from two in the existing architecture (Fig. 2) to 

one in Type I [Fig. 4(a)] without any additional clock 

cycles compared with the existing architecture. 

 

B. First Stage for 128-Point FFT 

The proposed FFT processor can support the 128-

point FFT/IFFT in a similar manner to compute the 

256-point FFT described in Section IV-A. As shown 

in Fig. 7, the proposed structure reduces the number 

of BUs from two to one in the first stage compared 

with the existing structure in Fig. 3. In Fig. 7, the 

input sequence of each data path is split into four data 

streams, and it takes 12 cycles using D4, D8, and 

D12 to start the first butterfly computation and four 

cycles to perform the radix-2/4 operations. To finish 

the radix-2 computation using one radix-2/4 BU, the 

proposed structure requires four cycles. Therefore, 

the first stage of the proposed processor also requires 

16 cycles, even with one radix-2/4 BU. Thus, the 

structure consisting of one radix-2/4 BU in the first 

stage can reduce the hardware complexity without 

increasing the number of clock cycles compared with 

the existing architecture. In the first stage in Fig. 7, 

the radix-2/4 BU can perform two radix-2 butterfly 

computations.  

The proposed structure performs complex 

multiplications for the second stage before the delay 

commutator using the shared multipliers. The 

commutator is configured by the operation mode. In 

the 128-point FFT, the operation mode number is 

calculated by t modulo four. The commutator 

operates in four different operation modes for 

performing the 128-point FFT. Fig. 8 shows the 

proposed first stage in the dotted box shown in Fig. 1, 

which consists of the input buffer, butterfly 

processing element, and commutator. In the first 

stage, the input sequence of each data path is divided 

into four data streams (A, B, C, and D), which are 

delayed by the delay elements to synchronize proper 

cycles. The butterfly operations in the first stage are 

performed by four data streams. The output data of 

the first stage are delivered to the second stage 

through the delay elements and the delay commutator 

by the operation modes in Figs. 4(c) and 7.  

 
Fig.7. Proposed first stage employing the scheduling 

scheme Of the 128-point FFT. 

 

Fig 8.Structure of the proposed first stage for the 

128/256- point FFT processor 
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C. Second and Third Stage Structure 

The input data multiplied by the appropriate twiddle 

factors are fed into the second stage for the radix-8 

butterfly operation through the delay commutator, as 

shown in Fig. 1. In the second stage, the remaining 

radix-8 calculation without multiplications is 

performed because all the multipliers of the second 

stage in the existing one are moved to the shared 

multipliers in the proposed first stage. A suitable 

structure is required to ensure the correction of the 

FFT output data because the third stage in Fig. 1 is 

different from the second stage. All the output data 

generated by the radix-8 butterfly in the second stage 

are fed to the third stage by a specific order 

in3(p, l) = out2(l, p) (13) 

 

D. Proposed 256/512-Point FFT/IFFT Processor 

This subsection presents the proposed MRMDC 

256/512-point FFT/IFFT processor. Fig. 9 shows the 

proposed processor that consists of four stages. The 

radix-2 BUs in the first stage are added to support the 

512-point FFT compared with that shown in Fig. 1. 

The second, third, and fourth stages are the same, as 

shown in Fig. 1. The processor shown in Fig. 9 

performs the 256-point FFT, which is similar to the 

256-point FFT in Fig. 4(c). As shown in Fig. 9, the 

input sequence is split into eight-parallel data paths 

that are delayed to arrange the input data order in the 

first stage. Fig. 10 redrawn from the dotted box in 

Fig. 9 shows one data path of the existing and 

proposed structures for the 512-point FFT, 

respectively. As shown in Fig. 10, all the multipliers 

of the third stage are moved to the shared multipliers 

in the second stage as we proposed in Type III. 

 

The SMSS shown in Fig. 5 can also be applied to the 

512-point FFT. To perform the 512-point FFT, the 

proposed structure computes twiddle factor 

multiplications for the second stage using the shared 

multipliers on each parallel data path. By employing 

SMSS, the proposed processor can support both the 

256- and 512-point FFTs. In addition, the proposed 

MRMDC can be applied to larger-size FFTs, such as 

1024, 2048, and 4096, using additional stages. For 

example, the 2048-point FFT processor consists of 

one radix-4 BU, the shared multipliers, one radix-8 

BU without multipliers, and two radix-8 BUs. 

 

Fig. 9. Proposed eight-parallel 256/512-point 

MRMDC  FFT/IFFT processor. 

 

Fig. 10. Structure of the proposed first and second 

stages for the 512-point FFT 

 

3. IMPLEMENTATION RESULTS 

 

Assuming that all processors have the same 

throughput, Table I compares the hardware 

complexities among the existing and proposed 

processors. Since the existing processors have been 

implemented on FPGA, comparing them with the 

proposed ones may not be meaningful. Hence, as 

shown in Table I, we consider the number of 

complex multipliers as they occupy most of the area 

of the FFT processor .In practice, one stage using 

radix-2/4 is equivalent to two stages using radix-2. 

Thus, Table I shows the number of complex adders 

for two stages using the radix-2 algorithm in and the 

numbers of complex adders for the first stage 

employing the radix-2/4 algorithm in and the 

proposed processors. 
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As shown in Table I, need 64 and 32 more complex 

multipliers compared with Type III, respectively. In 

addition, Type III needs only half the number of 

adders compared therefore, the existing processors 

based on radix-2 in may not be suitable for high 

throughput and low power designs. The existing 

128/256-point MRMDC has not been implemented 

by Rabiner and Gold. For fair comparisons, we 

implemented the existing and the proposed 

architectures employing the eight-parallel data paths. 

In Table I, the existing MRMDC requires 128 adders 

and 176 complex multipliers. 

TABLE I 

 
Comparisons of Hardware Complexity for Parallel 

Pipelined 128/256-Point FFTS 

 

For fair comparisons, Yang et al. introduced the 

normalized area AYang as follows:                              

AYang =                         Area  

                  (Tech/0.09 μm)
2
 × P × log2 N  

Where P, N, and Tech are the number of the parallel 

data paths, the FFT size, and the process technology 

in micrometers, respectively.  

To consider the normalized gate count (Gnorm), this 

paper revises as follows:  

Gnorm =            Gate count  

                        P × log2 N  

However, the normalized area and gate count do not 

consider the throughput rate. For a fairer comparison, 

we consider both the throughput rate and normalized 

gate count and define the throughput rate-to-gate 

count ratio (TGR) as follows:  

TGR =            Throughput rate 

   Gnorm  

In above, a larger value of TGR means a higher 

throughput and a smaller gate count, which 

demonstrates the area efficiency. Table IV presents 

the performance comparisons between the proposed 

128/256- and 256/512-point FFT/IFFT processors 

using Type III and the other existing FFT processors. 

The existing processors were designed for WPAN 

standards providing up to 2.6 GS/s, whereas the 

proposed processors are designed for 25 GS/s 

throughput required in the O-OFDM standards. 

Therefore, the comparisons among the existing and 

proposed processors may not be meaningful. 

Therefore, for a fair comparison, we define the TGR 

to consider the throughput rates, parallel data paths, 

FFT sizes, and gate counts simultaneously. 

 

4. CONCLUSION 

 

This paper proposed area-efficient and high-

throughput 128/256- and 256/512-point MRMDC 

FFT/IFFT processors using a novel scheduling 

scheme. SMSS can reduce the total number of 

complex multipliers from 176 to 128, and thus, the 

hardware complexity of the proposed processor is 

decreased by 20% when compared with the existing 

MRMDC.  

The performance results show that the proposed Type 

III architecture can achieve 27.5 GS/s at 430 MHz. 

Therefore, the proposed processors achieve a value of 

TGR that is higher than those of the other processors, 

which can meet the data rates of the high-speed 

OFDM standards such as O-OFDM and IEEE 

802.11ac. In addition, the proposed architectures can 

apply any FFT size greater than 512 points using 

additional stages. 
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