Čech D-Closed Sets in Closure Spaces

M. Avila Princy¹, A. Francina Shalini²

¹PG Student, Department of Mathematics, Nirmala College for Women, Coimbatore, India ²Assistant Professor, Department of Mathematics, Nirmala College for women, Coimbatore, India

Abstract- In this paper we introduced the concept Čech D-closed and Čech D-open sets in Čech closure spaces and investigate their characterizations.

Index Terms- Čech D-closed sets, Čech D-open sets.

I. INTRODUCTION

Čech spaces were introduced by Eduard Čech[1] in 1996. Generalized closed sets in Čech closed spaces were introduced by Chawalit Boonpok[2], and studied by many authors [4][6].In this paper we introduce the concept of Čech D-closed sets and Čech D-open sets and discuss their properties.

II. PRELIMINARIES

A map $k:P(X) \rightarrow P(X)$ defined on the power set P(X) of a set X is called a closure operator on X and the pair (X, k) is called a closure space if the following axioms are satisfied.

1. $k(\phi) = \phi$.

2. $A \subseteq k(A)$ for every $A \subseteq X$

3. k (A \cup B)=k(A) \cup k(B) for all A,B \subseteq X.

A closure operator k on X is called idempotent if k(A)=k[k(A)] for all $A \subseteq X$.

Definition 2.1:[1] A subset of a Čech-closure space (X,k) will be called Čech closed if k(A)=A and Čech open if its complement is closed. i.e., k(X-A)=X-A.

Definition 2.2:[9] A subset A of a Čech closure space (X,k) is said to be

1. Čech regular open if A= int (k(A)) and Čech Regular closed if A=k(int(A))

2. Čech pre-open if $A \subseteq int (k(A))$ and Čech pre-Closed if $k(int(A))\subseteq A$

- 3. Čech semi open if $A \subseteq k(int(A))$
- 4. Čech α -open if $A \subseteq int(k(int(A)))$ and Čech

 α - closed if k (int(k(A)) \subseteq A

5. Čech β -open if $A \subseteq k$ (int (k (A))) and Čech β - Closed if int (k (int (A)) $\subseteq A$

Definition 2.3:[10] Let (X, k) be a Čech closure space. A subset $A \subseteq X$ is called a Čech w-closed set if $k(A)\subseteq G$ whenever $A \subseteq G$ and G is semi-open Subset of (X,k). A subset A of X is called a w-open set if its complement is w-closed subset of (X, k).

Definition 2.4: Let (X,k) be a Čech closure space. A subset $A \subseteq X$ is called g-closed set if $k(A) \subseteq G$ whenever $A \subseteq G$ and G is Čech- open subset of (X, k). A subset $A \subseteq X$ is called a generalized open set, briefly a g-open set, if its complement is g-closed.

Definition 2.5:[5] Let (X,k) be a Čech closure space . A subset $A \subseteq X$ is called a Čech $\alpha\psi$ -closed if $k(A)\subseteq G$ whenever $A \subseteq G$ and G is α -open subset of (X, k).

Definition 2.6:[1] Let (X,k) be a Čech closure space. A subset $A \subseteq X$ is called a J-Čech closed set if $k_{\alpha}(A)\subseteq G$, whenever $A\subseteq G$ and G is semi-open subset of (X,k),where $k_{\alpha}(A)$ is the smallest α -closed set containing A.

Definition 2.7:[6] Let (X,k) be a Čech closure space. A subset $A \subseteq X$ is called a Čech $\pi g\beta$ -closed set if $k(A) \subseteq G$ whenever $A \subseteq G$ and G is π -open subset of (X, k).

III.ČECH D-CLOSED SETS

Definition 3.1: Let (X, k) be a closure space. A subset $A \subseteq X$ is called a Čech D-closed set $k_{\beta}(A) \subseteq G$ whenever $A \subseteq G$ and G is pre-open subset of (X,k), where $k_{\beta}(A)$ is the smallest β -closed set containing A.

A subset A of X is called a Čech D-open if its complement is a Čech D-closed subset of (X, k).

Theorem 3.2: Every Čech closed set is Čech D-closed set.

Proof: Let G be a pre-open subset of (X, k) such that $A \subseteq G$. Since A is Čech closed k(A)=A. Therefore $k_{\beta}(A) \subseteq k(A) = A \subseteq G$. (i.e.,) $k_{\beta}(A)\subseteq G$, where G is pre-open. Therefore A is Čech D-closed set. Hence Every Čech closed set is D-closed set.

Remark 3.3: Converse of the above theorem need not be true which can be seen from the following example.

Example 3.4: Let $X = \{a,b,c,d\}$ And define a closure k on Х by $k\{\phi\}=\phi,k\{a\}=\{a\},k\{b\}=k\{a,b\}=\{a,b\},k\{b,c\}=$ $k{a,b,c} = {a,b,c}, k{c} = k{a,c} = {a,c}, k{d} = k{a,d} =$ $k{a,b,d} = {a,b,d}, k{b,d} = k{c,d} = k{a,c,d} =$ $k\{b,c,d\}=kX=X.$ Čech closed of X: sets $\{\phi, X, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}\}$ Čech D-closed of X: $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{b, d\}$ $\{a,b,c\},\{a,b,d\}\}$ Then $A = \{a,d\}$ is Čech D-closed set but not Čech closed set.

Theorem 3.5:

(a)Every Čech w-closed set is Čech D-closed set.
(b)Every Čech g-closed set is Čech D-closed set.
(c)Every Čech αψ-closed set is Čech D-closed set.
(d)Every J-Čech closed set is Čech D-closed set.
(e)Every Čech πgβ-closed set is Čech D-closed set.

Proof: (a) Let A be a Čech w-closed set. Then $k_{\beta}(A) \subseteq G$ whenever $A \subseteq G$, G is pre-open in X. But $k(A) \subseteq k_{\beta}(A)$ whenever $A \subseteq G,G$ is pre-open in G. Now we have $k_{\beta}(A)\subseteq G,G$ is pre-open. Therefore A is Čech D-closed set.

Note: Proof is obvious for others.

Remark 3.6: Converse of the above theorem need not be true which can be seen from the following example. Example 3.7: Let $X=\{a,b,c,d\}$ And define a closure k on X by $k\{\phi\}=\phi,k\{a\}=\{a\},k\{b\}=k\{a,b\}=\{a,b\},k\{b,c\}=$ $k\{a,b,c\}=\{a,b,c\},k\{c\}=k\{a,c\}=\{a,c\},k\{d\}=k\{a,d\}=$ $k\{a,b,d\}=\{a,b,d\},k\{b,d\}=k\{c,d\}=k\{a,c,d\}=$

k{b,c,d}=kX=X. Čech w-closed set of X: { ϕ ,X,{a},{b},{a,b},{a,c},{b,c},{a,b,d}}. Čech D-closed of X: { ϕ ,X,{a},{b},{c},{a,b},{a,c},{a,d},{b,c},{b,d}}. {a,b,c,{a,b,d} Then A={a,d} is Čech D-closed set but not in Čech w-closed set.

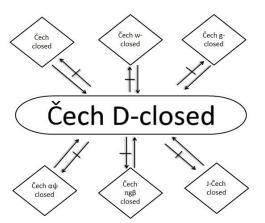
Example 3.8:Let $X = \{a, b, c, d\}$ And define a closure k on X by $k\{\phi\}=\phi,k\{a\}=\{a\},k\{b\}=k\{a,b\}=\{a,b\},k\{b,c\}=$ $k\{a,b,c\} = \{a,b,c\}, k\{c\} = k\{a,c\} = \{a,c\}, k\{d\} = k\{a,d\} =$ $k{a,b,d} = {a,b,d}, k{b,d} = k{c,d} = k{a,c,d} =$ $k\{b,c,d\}=kX=X$. Čech g-closed set of X: $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, c, c\}, \{a,$ $\{a,b,d\}\}$ Čech D-closed X: of $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{b, d\}$ $\{a,b,c\},\{a,b,d\}\}$ Then A={c} is Čech D-closed set but not in Čech g-closed set.

Example 3.9: Let $X=\{a,b,c,d\}$ And define a closure k on X by $k\{\phi\}=\phi,k\{a\}=\{a\},k\{b\}=k\{a,b\}=\{a,b\},k\{b,c\}=$ $k\{a,b,c\}=\{a,b,c\},k\{c\}=k\{a,c\}=\{a,c\},k\{d\}=k\{a,d\}=$ $k\{a,b,d\}=\{a,b,d\},k\{b,d\}=k\{c,d\}=k\{a,c,d\}=$ $k\{b,c,d\}=kX=X.$ Čech $\alpha\psi$ -closed set of X: $\{\phi,X,\{a\},\{b\},\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{a,b,c\},$ $\{a,b,d\}\}$ Čech D-closed of X: $\{\phi,X,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},$ $\{a,b,c\},\{a,b,d\}\}$ Then A= $\{b,d\}$ is Čech D-closed set but not in Čech $\alpha\psi$ -closed set.

Example 3.10: Let $X=\{a,b,c\}$ And define the closure operator on X by $k\{\phi\}=\phi,k\{a\}=\{a\},k\{b\}=\{b,c\},k\{c\}=\{c\}, k\{a,c\}=\{a,c\}=kX=X.$ J- Čech closed set of X : {\oplus, X, {a}, {c}, {a,c}} Čech D-closed set of X: {\oplus, X, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}} Then A={a,b} is Čech D-closed set but not in J-Čech closed set.

Example 3.11: Let $X = \{a, b, c, d\}$ And define a closure operator on X by $k\{\phi\}=\phi,k\{a\}=\{a\},k\{b\}=k\{a,b\}=\{a,b\},k\{b,c\}=$ $k{a,b,c} = {a,b,c}, k{c} = k{a,c} = {a,c}, k{d} = k{a,d} =$ $k{a,b,d} = {a,b,d}, k{b,d} = k{c,d} = k{a,c,d} =$ $k\{b,c,d\}=kX=X.$ Čech X: $\pi g\beta$ -closed set of $\{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,d\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}$ Čech D-closed set of X: $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{b, d\}$ $\{a,b,c\},\{a,b,d\}\}$ Then $A = \{c\}$ is Čech D-closed set but not in Čech $\pi g\beta$ -closed set.

Remark 3.12: From the above results we have the following implications.



Theorem 3.13: Let (X, k) be a closure space. If A and B are Čech D-closed subsets of (X, k) then AUB is Čech D-closed set.

Proof: Let G be a pre-open subset of (X, k) such that $A \cup B \subseteq G$, then $A \subseteq G$, $B \subseteq G$. Since A and B are Čech D-closed sets, $k_{\beta}(A) \subseteq G$ and $k_{\beta}(B) \subseteq G$ that implies $k_{\beta}(A) \cup k_{\beta}(B) \subseteq G$. Therefore $(A \cup B)$ is Čech D-closed set.

Remark 3.14: The intersection of two Čech D-closed sets need not be Čech D-closed as can be seen by the following example.

Example 3.15: Let $X=\{a,b,c,d\}$ And define the closure operator k on X by

 $k\{\phi\}=\phi,k\{a\}=k\{d\}=k\{a,b\}=k\{a,d\},=k\{a,b,d\}=\{a,b,d\}=k\{a,b,$ d, k{b}={b}, k{c}=k{b,d}=k{c,d}=k{b,c,d}={b,c,d}, $k{a,c,d} = {a,c,d} = kX = X.$ $k\{a,c\}=$ Čech D-closed of X: set $\{\phi, X, \{b\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,$ $\{a,b,d\},\{a,c,d\},\{b,c,d\}\}$ If $A = \{a, b\}$ and $B=\{a,c\}$.then $A \cap B = \{a,b\} \cap \{a,c\} = \{a\}$ which is not Čech D-closed set.

Theorem 3.16: Let (X, k) be a Čech closure space and Let $A \subseteq X$. If A is a Čech D-closed set, then $k_{\beta}(A)$ -A contains no non empty Čech pre-closed.

Proof : Let A be Čech D-closed set. Let F be a nonempty Čech pre-closed set $\subseteq k_{\beta}(A)$ -A. That implies $F \subseteq k_{\beta}(A) \cap A^{c}$. (i.e.,) $F \subseteq k_{\beta}(A)$ and $F \subseteq A^{c}$. $F \subseteq A^{c} \Rightarrow A \subseteq F^{c}$.Since F is Čech pre-closed, F^c is Čech pre-open. Thus we have $k_{\beta}(A) \subseteq F^{c}$. Consequently $F \subset [k_{\beta}(A)]^{c}$.Hence we get $F \subseteq k_{\beta}(A) \cap [k_{\beta}(A)]^{c} = \varphi$. Hence $k_{\beta}(A)$ -A contains no non empty Čech preclosed set.

Theorem 3.17: Let A be a Čech D-closed set. Then A is Čech β -closed if and only if $k_{\beta}(A)$ -A is Čech preclosed set.

Proof: Suppose that A is Čech D-closed set and Čech β -closed set. Since A=k_{\(\beta\)}(A) we have k_{\(\beta\)}(A)-A=\(\phi\), which is Čech pre-closed. Conversely, Suppose that A is Čech D-closed set and k_{\(\beta\)}(A)-A contains no non empty Čech pre-closed set. Then k_{\(\beta\)}(A)-A is itself Čech pre-closed \Rightarrow k_{\(\beta\)}(A)-A=\(\phi\). Hence A is Čech preclosed.

Proposition 3.18: Let (X,k) be a Čech closure space. If A is Čech D-closed and F is Čech pre-closed in (X, k) then $A \cap F$ is Čech D-closed.

Proof: Let G be a Čech pre-open subset of (X, k) such that $A \cap F \subseteq G$, Then $A \subseteq G \cup (X-F)$. And so, since A is Čech D-closed $,k_{\beta}(A) \subseteq G \cup (X-F)$, Then $k_{\beta}(A) \cap F \subseteq G$, since F is Čech pre-closed, $k_{\beta}(A) \cap F \subseteq G$. Therefore $A \cap F$ is Čech D-closed.

Proposition 3.19: Let (Y, I) be a closed subspace of (X, k). If F is a Čech D-closed subset of (Y, I), then F is a Čech D-closed subset of (X, k).

Proof: Let G be a Čech pre-open set of (X, k) such that $F \subseteq G$. Since F is Čech D-closed and $G \cap Y$ is Čech pre-open $k_{\beta}(F) \cap Y \subseteq G$, But Y is closed subset of (X, k) and $k_{\beta}(F) \subseteq G$, where G is a Čech pre-open set. Therefore F is a Čech D-closed of (X, k).

Proposition 3.20: Let (X, k) be a Čech closure spaces and let k be idempotent. If A is Čech D-closed subset of (X, k) such that $A \subseteq B \subseteq k_{\beta}(A)$, then B is a Čech D-closed subset of (X, k).

Proof: Let G be a Čech pre-open subset of (X, k) such that B \subseteq G. Then A \subseteq G, since A is Čech Dclosed, $k_{\beta}(A)\subseteq$ G. As k is idempotent, $k_{\beta}(B)\subseteq k_{\beta}(k_{\beta}(A))=$ $k_{\beta}(A)\subseteq$ G. Hence B is Čech Dclosed.

IV.ČECH D-OPEN SETS

Definition 4.1: A Subset A in Čech closure space (X,k) is called Čech D-open if its complement is Čech D-closed set.

Theorem 4.2: A subset A in Čech closure space (X,k) is called Čech D-open set if and only if $F \subseteq X-k_{\beta}(X-A)$ whenever F is pre-closed and $F \subseteq A$.

Proof : Suppose that A is Čech D-open and F be a pre-closed subset of (X, k) such that A \subseteq F then X-A \subseteq X-F. But X-A is Čech D-closed set and X-F is pre-open. That implies $k_{\beta}(X-A)\subseteq X-F$. (i.e.,) F \subseteq X- $k_{\beta}(X-A)$.Conversely, Let F be a preclosed set, F \subseteq A and F \subseteq X- $k_{\beta}(X-A)$ that implies k_{β} (X-A) \subseteq X-F, X-F is pre-open that implies X-A is Čech D-closed set and so A is Čech D-open.

Theorem 4.3: If A and B are Čech D-open subsets of (X, k) then A \cap B is Čech D-open set.

Proof: Let F be a pre-closed subset of (X, k) such that $F \subseteq A \cap B$. Then X- $(A \cap B) \subseteq X$ -F. This implies that $(X-A)\cup(X-B)\subseteq X$ -F. $(X-A)\cup(X-B)$ is Čech D-closed set. Thus $k_{\beta}[(X-A)\cup(X-B)]\subseteq X$ -F. Hence $k_{\beta}[X-(A \cap B)]\subseteq X$ -F. That implies $F \subseteq X-k_{\beta}[X-(A \cap B)]$ that implies $A \cap B$ is Čech D-open.

Theorem 4.4: Let (X, g) be a closure space and let (Y, h) be a closed subspace of (X, g). If G is Čech D-open subset of (X, g) then $G \cap Y$ is Čech D-open subset of (Y, h).

Proof: Let G be a Čech D-open subset of (X, g). Then X-G is a Čech D-closed subset of (X, g). Since Y is a closed subset of $(X, g), (X-G)\cap Y$ is a Čech D-closed set of (X, g). But $(X-G) \cap Y=Y-(G\cap Y)$. Therefore Y-(G \cap Y) is a Čech D-closed subset of (X, g). Hence G \cap Y is a Čech D-open subset of (X, g).

Proposition 4.5: Let (X,k) be Čech closure space. If A is D-open and B is pre-open in (X,k) then AUB is D-open.

Proof: Let F be a pre-closed subset of (X, k) such that $F \subseteq A \cup B$. Then X-($A \cup B$) \subseteq X-F. Hence $(X-A) \cap (X-B) \subseteq X$ -F. We have $(X-A) \cap (X-B)$ is D-closed. Therefore k $[(X-A) \cap (X-B)] \subseteq X$ -F. Consequently, $F \subseteq X$ -k $[(X-A) \cap (X-B)] = X$ -k $[X (A \cap B)]$. Since $F \subseteq X$ -k [(X-A)], then A is D-open. Therefore $A \cup B$ is D-open.

Remark 4.6: The union of two D-open sets need not be D-open.

Example 4.7: Let $X=\{a,b,c,d\}$ And define a closure k on X by $k\{\phi\}=\phi,k\{a\}=\{a\},k\{b\}=k\{a,b\}=\{a,b\},k\{b,c\}=$ $k\{a,b,c\}=\{a,b,c\},k\{c\}=k\{a,c\}=\{a,c\},k\{d\}=k\{a,d\}=$ $k\{a,b,d\}=\{a,b,d\},k\{b,d\}=k\{c,d\}=k\{a,c,d\}=$ $k\{b,c,d\}=kX=X.$ Čech D-open of X: $\{\phi,X,\{c\},\{d\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\},\{a,b,d\},$ $\{a,c,d\},\{b,c,d\}\}$ Then A= $\{a,c\}$ and B= $\{b,c\}$ then AUB= $\{a,b,c,\}$ which is not Čech D-open set.

Proposition 4.8: Let (X,k) be a Čech closure space. If A is D-open subset of (X,k) then X=G whenever G is pre-open and $(X-k(X-A))\cup(X-A)\subseteq G$.

Proof: Suppose that A is D-open. Let G be an preopen subset of (X,k) such that $(X-k(X-A))\cup(X-A)\subseteq G$. Then X-G \subseteq X-[(X-k(X-A))\cup(X-A)].Therefore X-G \subseteq k(X-A) \cap A implies that X-G \subseteq k(X-A)-(X- A).But X-G is pre closed and X-A is D-closed. Then by proposition 3.17 X- $G=\phi$, consequently X=G.

REFERENCES

- I. Arockiarani and J.Martina Jency,"On J- Čech closed sets in closure spaces", Kerala Mathematical Association.
- [2] I.Arockiarani and J.Martina Jency,"On contra J- Čech continuous mappings", International Journal of Mathematics Archive-2(9),2011.
- [3] C.Boonpok, "Generalized closed sets in Čech closed spaces", Acta Universitatis Apulensis.
- [4] E. Čech ,"Topological spaces", Inter science John wiley and son, New york(1996).
- [5] R.Devi and M.Parimala,"On αψ-closed sets in Bi-Čech closure spaces", International Journal of Math. Analysis, 1606.
- [6] A.Francina Shalini and I.Arockiarani," Čech πgβ-closed sets in closure spaces", Journal of Global Research in Mathematical Archives, Volume, No.4, April,2013.
- [7] A.Francina Shalini and I.Arockiarani,"On contra Čech πgβ-continuous functions Čech in closure spaces", International Journal of Innovative Research in Science, Engineering and Technology, Volume,No.5,Issue-3,March-2016.
- [8] Levine N," Generalized closed sets in topology", Rend. Circ. Mat. Palermo. 1970; 19:89-96.
- [9] T.Muthu Priya and A.Francina Shalini," Čech MP-closed sets in Closure spaces", International Journal of Innovative Research in Science, Engineering and Technology, Vol.3, Issue-8,August-2016.
- [10] D.Sasikala and I.Arockiarani," Čech w-closed sets in closure spaces", International Journal of Mathematical Archive-4(10),013,30-35.