
© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145753 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 266

Mitigating Cross-Site Scripting Attacks with a Content

Security Policy

Vutukuru Parvathi

1
, Dr. G V Ramesh Babu

2

M.C.A, M.Tech, Ph.D

Abstract- A content security policy (CSP) can help Web

application developers and server administrators better

control website content and avoid vulnerabilities to

cross site scripting (XSS). In experiments with a

prototype website, the authors’ CSP implementation

successfully mitigated all XSS attack types in four

popular browsers.

Among the many attacks on Web applications, cross site

scripting (XSS) is one of the most common. An XSS

attack involves injecting malicious script into a trusted

website that executes on a visitor’s browser without the

visitor’s knowledge and thereby enables the attacker to

access sensitive user data, such as session tokens and

cookies stored on the browser.1 With this data,

attackers can execute several malicious acts, including

identity theft, key logging, phishing, user

impersonation, and webcam activation.

Content Security Policy (CSP) is an added layer of

security that helps to detect and mitigate certain types

of attacks, including Cross S ite Scripting (XSS) and

data injection attacks. These attacks are used for

everything from data theft to site defacement or

distribution of malware. CSP is designed to be fully

backward compatible; browsers that don't support it

still work with servers that implement it, and vice-versa.

Browsers that don't support CSP simply ignore it,

functioning as usual, defaulting to the standard same-

origin policy for web content. If the site doesn't offer the

CSP header, browsers likewise use the standard same-

origin policy.

Enabling CSP is as easy as configuring your web server

to return the Content-Security-Policy HTTP header.

(Prior to Firefox 23, the X-Content-Security-Policy

header was used). See Using Content Security Policy for

details on how to configure and enable CSP.

INTRODUCTION

A primary goal of CSP is to mitigate and report

XSS attacks. XSS attacks exploit the browser's trust

of the content received from the server. Malicious

scripts are executed by the victim's browser because

the browser trusts the source of the content, even

when it's not coming from where it seems to be

coming from.

CSP makes it possible for server administrators to

reduce or eliminate the vectors by which XSS can

occur by specifying the domains that the browser

should consider to be valid sources of executable

scripts. A CSP compatible browser will then only

execute scripts loaded in source files received from

those whitelisted domains, ignoring all other script

(including inline scripts and event-handling

HTML attributes).

As an ultimate form of protection, sites that want to

never allow scripts to be executed can opt to globally

disallow script execution.

Even major application services such as Facebook,

Google, PayPal, and Twitter suffer from XSS attacks,

which have grown alarmingly since they were first

reported in a 2003 Computer Emergency Response

Team advisory. The Open Web Application Security

Project ranked XSS third on its 2013 list of top 10

Web vulnerabilities (the latest list as of February

2016), calling it the “most prevalent Web application

security flaw. Underscoring the widespread risk of

XSS intrusions, WhiteHat Security’s May 2013 Web

Security Statistics Report noted that 43 percent of

Web applications were vulnerable to this kind of

attack (www

.whitehatsec.com/assets/WPstatsReport_052013.pdf).

Researchers have proposed a range of mechanisms to

prevent XSS attacks, with content sanitizers

dominating those approaches. Although sanitizing

eliminates potentially harmful content from untrusted

input, each Web application must manually

implement it—a process prone to error. To avoid this

problem, we use a different technique. Instead of

sanitizing harmful scripts before they are injected

into a website, we block them from loading and

executing with a variation of the content security

policy (CSP), which provides server administrators

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145753 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 267

with a white list of accepted and approved resources.

The Web application or website will block any input

not on that list and thus there is no need for

sanitizing. The white list also guards against data

exfiltration and extrusion—the unauthorized

downloading of data from a website visitor’s

computer.

EXISTING SYSTEM

Thus system will send request with identity. After

that all the collected information will be send to

collection database server. It not only protects clients

from XSS attacks but also inform the vulnerable web

servers.

This mechanism requires minimal effort and low

performance overhead. Also, it will prevent all the

types of XSS attacks.

Disadvantages

How to use the collected information in database is

not addressed.

How to make system deployed universally has also

not been addressed.

It requires modifications in the frameworks or

installation of additional frameworks.

Approved scripts have to be identified by the website.

There is no single policy for all the documents.

Creating policies manually is a very tough task.

This approach incurs runtime overhead due to

interception of HTTP traffic.

It requires user-defined security policies which can

be labor-intensive.

PROPOSED SYSTEM

A client-side tool that acts as a Web proxy, disallows

requests that do not belong to the website and thus

thwarts stored XSS attacks. Browser-enforced

embedded policies (BEEPs) let the Web application

developer embed a policy in the website by

specifying which scripts are allowed to run.With a

BEEP, the developer can put genuine source scripts

in a white list and disable source scripts in certain

website regions. Document Structure Integrity (DSI)

is a client-server architecture that restricts the

interpretation of untrusted content. DSI uses parser-

level isolation to isolate inline untrusted data and

separates dynamic content from static content.

However, this approach requires both servers and

clients to cooperatively upgrade to enable protection.

SOFTWARE ENVIRONMENT

Java Technology

Java technology is both a programming language and

a platform.

The Java Programming Language

The Java programming language is a high-level

language that can be characterized by all of the

following buzzwords:

 Simple

 Architecture neutral

 Object oriented

 Portable

 Distributed

 High performance

 Interpreted

 Multithreaded

 Robust

 Dynamic

 Secure

With most programming languages, you either

compile or interpret a program so that you can run it

on your computer. The Java programming language

is unusual in that a program is both compiled and

interpreted. With the compiler, first you translate a

program into an intermediate language called Java

byte codes —the platform-independent codes

interpreted by the interpreter on the Java platform.

The interpreter parses and runs each Java byte code

instruction on the computer. Compilation happens

just once; interpretation occurs each time the program

is executed. The following figure illustrates how this

works.

You can think of Java byte codes as the machine

code instructions for the Java Virtual Machine (Java

VM). Every Java interpreter, whether it’s a

development tool or a Web browser that can run

applets, is an implementation of the Java VM. Java

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145753 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 268

byte codes help make “write once, run anywhere”

possible. You can compile your program into byte

codes on any platform that has a Java compiler. The

byte codes can then be run on any implementation of

the Java VM. That means that as long as a computer

has a Java VM, the same program written in the Java

programming language can run on Windows 2000, a

Solaris workstation, or on an iMac.

The Java Platform

A platform is the hardware or software environment

in which a program runs. We’ve already mentioned

some of the most popular platforms like Windows

2000, Linux, Solaris, and MacOS. Most platforms

can be described as a combination of the operating

system and hardware. The Java platform differs from

most other platforms in that it’s a software-only

platform that runs on top of other hardware-based

platforms.

The Java platform has two components:

 The Java Virtual Machine (Java VM)

 The Java Application Programming Interface

(Java API)

You’ve already been introduced to the Java VM. It’s

the base for the Java platform and is ported onto

various hardware-based platforms.

The Java API is a large collection of ready-made

software components that provide many useful

capabilities, such as graphical user interface (GUI)

widgets. The Java API is grouped into libraries of

related classes and interfaces; these libraries are

known as packages. The next section, What Can Java

Technology Do? Highlights what functionality some

of the packages in the Java API provide.

The following figure depicts a program that’s running

on the Java platform. As the figure shows, the Java

API and the virtual machine insulate the program

from the hardware.

Native code is code that after you compile it, the

compiled code runs on a specific hardware platform.

As a platform-independent environment, the Java

platform can be a bit slower than native code.

However, smart compilers, well-tuned interpreters,

and just-in-time byte code compilers can bring

performance close to that of native code without

threatening portability.

What Can Java Technology Do?

The most common types of programs written in the

Java programming language are applets and

applications. If you’ve surfed the Web, you’re

probably already familiar with applets. An applet is a

program that adheres to certain conventions that

allow it to run within a Java-enabled browser.

However, the Java programming language is not just

for writing cute, entertaining applets for the Web.

The general-purpose, high-level Java programming

language is also a powerful software platform. Using

the generous API, you can write many types of

programs.

An application is a standalone program that runs

directly on the Java platform. A special kind of

application known as a server serves and supports

clients on a network. Examples of servers are Web

servers, proxy servers, mail servers, and print servers.

Another specialized program is a servlet. A servlet

can almost be thought of as an applet that runs on the

server side. Java Servlets are a popular choice for

building interactive web applications, replacing the

use of CGI scripts. Servlets are similar to applets in

that they are runtime extensions of applications.

Instead of working in browsers, though, servlets run

within Java Web servers, configuring or tailoring the

server.

How does the API support all these kinds of

programs? It does so with packages of software

components that provides a wide range of

functionality. Every full implementation of the Java

platform gives you the following features:

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145753 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 269

 The essentials: Objects, strings, threads,

numbers, input and output, data structures,

system properties, date and time, and so on.

 Applets: The set of conventions used by applets.

 Networking: URLs, TCP (Transmission Control

Protocol), UDP (User Data gram Protocol)

sockets, and IP (Internet Protocol) addresses.

 Internationalization: Help for writing programs

that can be localized for users worldwide.

Programs can automatically adapt to specific

locales and be displayed in the appropriate

language.

 Security: Both low level and high level,

including electronic signatures, public and

private key management, access control, and

certificates.

 Software components: Known as JavaBeans
TM

,

can plug into existing component architectures.

 Object serialization: Allows lightweight

persistence and communication via Remote

Method Invocation (RMI).

 Java Database Connectivity (JDBC
TM

): Provides

uniform access to a wide range of relational

databases.

The Java platform also has APIs for 2D and 3D

graphics, accessibility, servers, collaboration,

telephony, speech, animation, and more. The

following figure depicts what is included in the Java

2 SDK.

SYSTEM DESIGN

Data Flow Diagram / Use Case Diagram / Flow

Diagram

The DFD is also called as bubble chart. It is a simple

graphical formalism that can be used to represent a

system in terms of the input data to the system,

various processing carried out on these data, and the

output data is generated by the system.

Data Flow Diagram:

(Admin)

Upload BookDetails

Check

Unauthorized User

Update Site

Detecting Attacks

View UserRegistration

No

EndProcess

Yes

Admin Login

Vulnerability Detection

Detecting in Graph

(User):

Registration

Check

Unauthorized User

Intruder Login Via

Threats Occuring

Sql Injection

No

EndProcess

Yes

UserLogin

CrossSite Scripting

View Site

Component Diagram:

Admin:

Update Site
Detecting Attacks

Admin

EnterUsername And Password

AdminLogin

Upload BookDetails
View UserRegistration

Vulnerability Detection

Detecting in Graph.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145753 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 270

User:

Intruder Login Via
Threats Occuring

User

EnterUsername And Password

UserLogin

Registration
Sql Injection

View Site

CrossSite Scripting

Use case Diagram:(Admin)

Admin

Login

Detecting in Graph.

Update Site
Detecting Attacks

Upload BookDetails

Vulnerability Detection

View UserRegistration

User:

User

Login

View Site

Intruder Login Via
Threats Occuring

Registration

CrossSite Scripting

Sql Injection

ACTIVITY DIAGRAM: (Admin)

Upload BookDetails Detecting in Graph.Update Site

AdminLogin

Vulnerability Detection

Detecting AttacksView UserRegistration

User:

View Site

UserLogin

Intruder Login Via Sql Injection Threats Occuring

CrossSite Scripting

Registration

Sequence Diagram:(Admin)

Admin

Login

Enter
Username

And
Password

Upload BookDetails Update Site View UserRegistration Vulnerability Detection Detecting Attacks

User:

User

Login

Enter
Username

And
Password

Registration Sql Injection CrossSite Scripting
Threats Occuring View Site

CONCLUSION

Although our CSP has many benefits, it is not

intended as a primary defense mechanism against

XSS attacks. Rather, it would best serve as a

defensein- depth mitigation mechanism. A primary

defense involves tailored security schemes that

validate user inputs and encode user outputs.

Cross site scripting has been a major threat for web

applications and its users from past few years. Lot of

work has been done to handle XSS attacks which

include:

 Client side approaches

 Server side approaches

 Testing based approaches

 Static and dynamic analysis based approaches

Each kind of solution has been discussed in this

paper. Different approaches have their own

advantages and disadvantages. Major problems faced

are:

 Requirement of complex frameworks

 Additional runtime overhead

 Intensive labor requirements

 Not being able to cover all types of XSS attacks

 Prone to human error

 Requires client action

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145753 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 271

 Not able to detect web content manipulation

 False positives and false negatives

 Effectives depend on completeness of specification

Based on our requirements we can choose among the

possible solutions. However, there is no ideal

solution for the detection and prevention of XSS

attacks.

