Cyberbullying Detection based on Semantic-Enhanced Marginalized Denoising Auto – Encoder

Vidagottu Nageswaramma¹, Dr. G. Anjan Babu² M.Sc, M.Tech, Ph.D

Abstract- "Cyberbullying" is when a child, preteen or teen is tormented, threatened, harassed, humiliated, embarrassed or otherwise targeted by another child, preteen or teen using the Internet, interactive and digital technologies or mobile phones. As a side effect of increasingly popular social media, cyberbullying has emerged as a serious problem afflicting children, adolescents and young adults. Machine learning techniques make automatic detection of bullying messages in social media possible, and this could help to construct a healthy and safe social media environment. In this meaningful research area, one critical issue is robust and discriminative numerical representation learning of text messages. In this paper, we propose a new representation learning method to tackle this problem. Our method named Semantic-Enhanced Marginalized Denoising Auto-Encoder (smSDA) is developed via semantic extension of the popular deep learning model stacked denoising autoencoder. The semantic extension consists of semantic dropout noise and sparsity constraints, where the semantic dropout noise is designed based on domain knowledge and the word embedding technique. Our proposed method is able to exploit the hidden feature structure of bullying information and learn a robust and discriminative representation of text. Comprehensive experiments on two public cyberbullying corpora (Twitter and MySpace) are conducted, and the results show that our proposed approaches outperform other baseline text representation learning methods.

INTRODUCTION

Social Media, as defined in "a group of Internetbased applications that build on the ideological and technological foundations of Web 2.0, and that allow the creation and exchange of usergenerated content." Via social media, people can enjoy enormous information, convenient communication experience and so on. However, social media may have some side effects such as cyberbullying, which may have negative impacts on the life of people, especially children and teenagers. Cyberbullying can be defined as aggressive, intentional actions performed by an individual or a group of people via digital communication methods such as sending messages and posting comments against a victim. Different from traditional bullying that usually occurs at school during faceto- face communication, cyberbullying on social media can take place anywhere at any time. For bullies, they are free to hurt their peers' feelings because they do not need to face someone and can hide behind the Internet.

One way to address the cyberbullying problem is to automatically detect and promptly report bullying messages so that proper measures can be taken to prevent possible tragedies. Previous works on computational studies of bullying have shown that natural language processing and machine learning are powerful tools to study bullying. Cyberbullying detection can be formulated as a supervised learning problem. A classifier is first trained on a cyberbullying corpus labeled by humans, and the learned classifier is then used to recognize a bullying message.

PROPOSED SYSTEM

Some approaches have been proposed to tackle these problems by incorporating expert knowledge into feature learning. Proposed to combine BoW features, sentiment features and contextual features to train a support vector machine for online harassment detection.

It can utilized label specific features to extend the general features, where the label specific features are learned by Linear Discriminative Analysis. In addition, common sense knowledge was also applied. Nahar et.al presented a weighted TF-IDF scheme via scaling bullying-like features by a two factor. Besides content-based information, Maral et.al proposed to apply users' information, such as gender and history messages, and context information as extra features.

322

But a major limitation of these approaches is that the learned feature space still relies on the BoW assumption and may not be robust. In addition, the performance of these approaches rely on the quality of hand-crafted features, which require extensive domain knowledge.

EXISTING SYSTEM

A classifier is first trained on a cyberbullying corpus labeled by humans, and the learned classifier is then used to recognize a bullying message. Three kinds of information including text, user demography, and social network features are often used in cyberbullying detection. Since the text content is the most reliable, our work here focuses on text-based cyberbullying detection.

In the text-based cyberbullying detection, the first and also critical step is the numerical representation learning for text messages. In fact, representation learning of text is extensively studied in text mining, information retrieval and natural language processing (NLP). Bag-of-words (BoW) model is one commonly used model that each dimension corresponds to a term. Latent Semantic Analysis (LSA) and topic models are another popular text representation models, which are both based on BoW models. By mapping text units into fixed-length vectors, the learned representation can be further processed for numerous language processing tasks.

SOFTWARE ENVIRONMENT

Java Technology

Java technology is both a programming language and a platform.

The Java Programming Language

The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

- Simple
- Architecture neutral
- Object oriented
- Portable
- Distributed
- High performance
- Interpreted
- Multithreaded

- Robust
- Dynamic
- Secure

With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java programming language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a program into an intermediate language called *Java byte codes* —the platform-independent codes interpreted by the interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works.

You can think of Java byte codes as the machine code instructions for the *Java Virtual Machine* (Java VM). Every Java interpreter, whether it's a development tool or a Web browser that can run applets, is an implementation of the Java VM. Java byte codes help make "write once, run anywhere" possible. You can compile your program into byte codes on any platform that has a Java compiler. The byte codes can then be run on any implementation of the Java VM. That means that as long as a computer has a Java VM, the same program written in the Java programming language can run on Windows 2000, a Solaris workstation, or on an iMac.

INPUT DESIGN

The input design is the link between the information system and the user. It comprises the developing specification and procedures for data preparation and those steps are necessary to put transaction data in to a usable form for processing can be achieved by inspecting the computer to read data from a written or printed document or it can occur by having people keying the data directly into the system. The design of input focuses on controlling the amount of input required, controlling the errors, avoiding delay, avoiding extra steps and keeping the process simple. The input is designed in such a way so that it provides security and ease of use with retaining the privacy. Input Design considered the following things:

What data should be given as input?

How the data should be arranged or coded?

The dialog to guide the operating personnel in providing input.

Methods for preparing input validations and steps to follow when error occur.

OBJECTIVES

- 1. Input Design is the process of converting a useroriented description of the input into a computerbased system. This design is important to avoid errors in the data input process and show the correct direction to the management for getting correct information from the computerized system.
- 2. It is achieved by creating user-friendly screens for the data entry to handle large volume of data. The goal of designing input is to make data entry easier and to be free from errors. The data entry screen is designed in such a way that all the data manipulates can be performed. It also provides record viewing facilities.
- 3. When the data is entered it will check for its validity. Data can be entered with the help of screens. Appropriate messages are provided as when needed so that the user will not be in maize of instant. Thus the objective of input design is to create an input layout that is easy to follow

OUTPUT DESIGN

A quality output is one, which meets the requirements of the end user and presents the information clearly. In any system results of processing are communicated to the users and to other system through outputs. In output design it is determined how the information is to be displaced for immediate need and also the hard copy output. It is the most important and direct source information to the user. Efficient and intelligent output design improves the system's relationship to help user decision-making.

Designing computer output should proceed in an organized, well thought out manner; the right output must be developed while ensuring that each output element is designed so that people will find the system can use easily and effectively. When analysis design computer output, they should Identify the specific output that is needed to meet the requirements.

2. Select methods for presenting information.

3. Create document, report, or other formats that contain information produced by the system.

The output form of an information system should accomplish one or more of the following objectives.

Convey information about past activities, current status or projections of the Future.

Signal important events, opportunities, problems, or warnings.

Trigger an action.

Confirm an action.

CONCLUSION

The addresses the text-based cyberbullying detection where discriminative problem, robust and representations of messages are critical for an effective detection system. By designing semantic dropout noise and enforcing sparsity, we have developed semantic-enhanced marginalized denoising autoencoder as a specialized representation learning model for cyberbullying detection. In addition, word embeddings have been used to automatically expand and refine bullying word lists that is initialized by domain knowledge. The performance of our approaches has been experimentally verified through two cyberbullying corpora from social medias: Twitter and MySpace. As a next step we are planning to further improve the robustness of the learned representation by considering word order in messages.