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Abstract- Most users of online services have unique 

behavioral or usage patterns. These behavioral patterns 

can be exploited to identify and track users by using 

only the observed patterns in the behavior. We study 

the task of identifying users from statistics of their 

behavioral patterns. Specifically, we focus on the setting 

in which we are given histograms of users’ data 

collected during two different experiments. We assume 

that, in the first dataset, the users’ identities are 

anonymized or hidden and that, in the second dataset, 

their identities are known. We study the task of 

identifying the users by matching the histograms of 

their data in the first dataset with the histograms from 

the second dataset. In recent works [1], [2] the optimal 

algorithm for this user identification task is introduced. 

In this paper, we evaluate the effectiveness of this 

method on three different types of datasets with up to 

50, 000 users, and in multiple scenarios. Using datasets 

such as call data records, web browsing histories, and 

GPS trajectories, we demonstrate that a large fraction 

of users can be easily identified given only histograms of 

their data; hence these histograms can act as users’ 

fingerprints. We also verify that simultaneous 

identification of users achieves better performance 

compared to one-by-one user identification. 

Furthermore, we show that using the optimal method 

for identification indeed gives higher identification 

accuracy than heuristics-based approaches in practical 

scenarios. The accuracy obtained under this optimal 

method can thus be used to quantify the maximum level 

of user identification that is possible in such settings. 

We show that the key factors affecting the accuracy of 

the optimal identification algorithm are the duration of 

the data collection, the number of users in the 

anonymized dataset, and the resolution of the dataset. 

We also analyze the effectiveness of k -anonymization in 

resisting user identification attacks on these datasets.  

 

I. INTRODUCTION 

 

A common task in data analysis is to identify users 

by exploiting statistics of their data. In many 

applications, we have access to some information 

about a set of users from one source, and some other 

information about the set of users from another 

source, and the task is to match pieces of information 

from the first source to pieces of information from 

the second source that correspond to the same 

underlying user. If the identities of the users in the 

two sets are known, then this is a trivial task. 

However, in many practical applications, the 

identities of the users are unknown either in the first 

setor in the second set or in both; therefore, in such 

cases, the task becomes non-trivial. For example, the 

two datasets might contain information about 

location statistics of users in a city measured over 

distinct time periods.  

The problem of matching users is also relevant in the 

context of privacy of an anonymized database. In 

recent years, many datasets containing information 

about individuals have been released into the public 

domain in order to provide open access to statistics or 

to facilitate data-mining research. Often these 

databases are anonymized by suppressing identifiers 

that reveal the identities of the users, such as names 

or social security numbers. Nevertheless, recent 

research has revealed that the privacy offered by such 

anonymized databases could be compromised, if an 

adversary correlates the revealed in-formation with 

auxiliary information about the users from publicly 

available databases. A famous example of such a de-

anonymization attack was shown in [4], in which 

anonymous movie ratings released during the Netflix 

Prize contest were de-anonymized by using public 

user reviews from the Internet Movie Database 

(IMDB). In such attacks, the adversary’s task of de-
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anonymization is essentially a matching task. The 

objec-tive is to identify users in the anonymized 

dataset by matching their data to the publicly 

available auxiliary information. 

As the question of matching users is relevant in many 

applications, this problem has been studied by many 

authors in different fields, including database 

management [ 5], infor-mation retrieval [6], natural 

language processing [7], author identification [8], [9], 

and privacy [4]. Nevertheless, most solutions to the 

matching problem rely on heuristics that are relevant 

for specific applications, but not for other 

applications. In this paper, we present a systematic 

study of the matching problem under a general 

setting. The problem we study differs  

 

from typical approaches in data analysis in that we 

focus on the setting in which the available 

information about a user’s data is in the form of 

histograms of the user’s data. The histograms capture 

the habits of the users. In the case of mobility traces, 

such histograms could be the average time spent by 

each user at different locations during a day, or 

during different time intervals. In some applications, 

such as urban planning, the data collected naturally 

contains only the statistics of the data, as they are 

sufficient for such applications. In other applications, 

the data is intentionally stripped of timing 

information to enhance the privacy of the users; in 

which case, all that remains are histograms. We study 

the problem of matching histograms of users’ data 

measured in two independent experiments as a 

hypothesis testing problem. This novel formulation 

has the advantage of making it possible to rigorously 

define the accuracy of a matching scheme and to 

identify an algorithm that is provably more accurate 

than other schemes. 

An example of a user identification task, is to 

consider a dataset comprised of unlabeled location 

histograms, given in Table I(a), where the user 

identities are removed. Now consider an adversary 

who has access to the labeled location histograms of 

the same users in an independent experiment where 

the user identities are known (refer to Table I(b)). 

This information could be obtained, for instance, by 

tracking the users during a different time-period 

compared to those in Table I(a). The histograms 

corresponding to each user in the two tables are 

expected to be similar, as the habits of the user are 

expected to remain the same across the two datasets; 

but they might not be exactly identical due to the 

inherent randomness in the user’s behavior. The 

objective of the adversary is to match the user 

identities (i.e., the rows) across the two tables. 

In the next section, we provide a detailed comparison 

of this problem with existing literature on user 

identification and highlight the new contributions of 

this work. We state the problem in mathematical 

form and propose our solution in Section III. We 

experimentally evaluate our solution by using three 

different datasets in Section IV. In Section V, we 

analyze the efficacy of our algorithm if additional 

privacy enhancing techniques, such as k-

anonymization, are applied to histograms of users’ 

data. We conclude the paper with some discussions in 

Section VI. 

 

II.RELATED WORK AND CONTRIBUTIONS 

 

The user matching studied in this paper is closely 

related to several problems that have been studied in 

other different communities. In this section, we 

present a comparison of our approach with related 

problems from several areas, and highlight our 

contributions relative to existing work. 

 

A. Entity resolution 

A matching problem studied in the database 

community is that of identifying different data 

records that refer to the same real-world object [5]. 

Similarly, in natural-language processing, the 

problem of linking different mentions of the same 

underlying entity in text [7] is analogous to the 

objective in the user-matching problem. Another 

example from the information-retrieval literature is 

the problem of classifying documents by their 
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authors, given documents from different authors with 

the same name [6]. User matching has also been 

studied in the social-networks community in which 

the objective is to identify different profiles that 

belong to the same underlying user [10]. Such 

problems fall under the umbrella-term entity 

resolution (ER) [11]. In these problems, the available 

information about the users is often not in the form of 

histograms, and the solutions proposed are often 

based on heuristics and practical convenience; 

whereas the solution we propose in this paper is 

specific to the setting in which the only information 

available about the users is in the form of histograms, 

and in this setting, the solution is optimal for 

minimizing the probability of misclassification. 

 

B. De-anonymization attacks 

Our work is also closely related to the literature on 

de-anonymization methods [4], [12] studied in the 

literature on privacy. A number of works on de-

anonymization focus on demonstrating that even 

when users’ data are anonymized, the data belonging 

to each user is often unique. In such examples, an 

adversary who has access to auxiliary information 

about the users can de-anonymize the anonymized 

datasets by exploiting the uniqueness of the data 

belonging to each user. For example, in [13] the 

authors perform a study on the top k locations most 

frequently visited by users in a nationwide call-data 

record (CDR) dataset. They consider various levels 

of spatial granularity (such as sector, cell, zip code, 

city, state, and country) and temporal granularity 

(such as day and month), and they show that the most 

frequently visited locations can act as quasi-

identifiers to re-identify anonymous users. Thus an 

adversary can de-anonymize such a dataset by 

obtaining access to auxiliary information about the 

users’ zip codes and times of activity. The 

adversary’s goal is essentially a matching task, i.e., 

the adversary seeks to match the auxiliary 

information about the users with the unique aspects 

of the users’ data. Some other works such as [13]–

[19] study the uniqueness of mobility data traces. 

There is a line of work on studying the uniqueness of 

web browsing history patterns of users [ 20],[21].In 

[20] the authors consider a dataset where every 

record is the set of visited websites by a user during 

some period of time. The authors investigate how 

unique is a single user’s record compared to other 

users’ records in the dataset. 

 

Although our work is related to de-anonymization, it 

differs in several aspects. First, we assume that the 

only information about the users in the two datasets 

are time-averaged statistics of the users’ data. In most 

works on user matching and de-anonymization [4], 

[22], [23], the vulnerability to privacy breaches often 

arises due to the sparsity of the temporal evolution of 

the users’ data. For instance, the fact that a user 

watched and rated a movie during a particular time-

period or was at a specific location during a particular 

time can be used to easily identify the user’s data 

from the anonymized dataset. Other de-

anonymization works focus on identifying the 

temporal patterns of the data collected from the users. 

For example, in [17], [18], a Markov model is 

constructed based on the temporal evolution of the 

mobility patterns of the users, and then similarity 

measures are used for de-anonymization. Such 

temporal information in the users’ data, however, is 

removed when only statistics in the form of 

histograms from each user is collected or released. 

Often this results in a much lower uniqueness in the 

information available about the users; hence 

matching users’ statistics is, in general, much more 

difficult than matching users’ datasets. 

Second, we assume that the two sets of the statistical 

in-formation are mutually statistically independent. 

For example, in the case of mobility data, this could 

be because the two datasets were obtained over 

different time periods. We seek to perform the 

matching by only exploiting the fact that users’ habits 

remain stationary and ergodic across the two datasets. 

This is in contrast to the approach of works such as [ 

15], [16], [24] that perform de-anonymization by 

using auxiliary information collected over the same 

period of time as the anonymized dataset. In such 

cases, the auxiliary information is not independent of 

the anonymized user data. In [ 20], the authors 

investigate the stability of the set of visited websites 

by a user across time. In particular, they record the 

set of visited websites by a user during one day. They 

use the Jaccard index to measure the similarity 

between the sets collected for one user over different 

days. They show that the set of visited websites by a 

user is stable during a four-week period. A special 

case of our work is when the labeled and unlabeled 
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histograms are obtained from the same source in 

different time periods. The accuracy of our matching 

algorithm in such cases is dependent on how how 

much the statistical characteristics of the data is 

preserved over time. 

Third, we perform simultaneous matching of the 

informa-tion available about all users and not one 

user at a time. Simultaneous matching takes into 

account all the information available about the users 

at the same time, and hence out-performs matching 

users one at a time. Simultaneously taking into 

account all the information for various attacks has 

already been employed in different domains [ 9], 

[25]–[27] and in this paper we employ it in the 

domain of histogram matching.There is also a related 

line of work on graph de-anonymization, also known 

as graph alignment [ 22], [23],[28].It is the problem 

of matching the nodes across two 

 

similar graphs, where the only available information 

is the two graphs. For example, given the graph of 

connections between users on two different social 

networks (e.g., Facebook and LinkedIn), it might be 

possible to match users across the two social 

networks by exploiting the fact that the structure of 

the underlying graphs are expected to be similar. This 

problem is different from that studied in the present 

paper because, in our setting, the graph-based 

connections among the users are not available. 

 

C. Supervised learning 

The matching task studied in this paper is closely 

related to the classification task studied in supervised 

learning [29], where the objective is to classify test 

data to the correct class based on labeled training data 

observed under each of the classes. Nevertheless, a 

key aspect of our approach that differs from 

supervised learning is that we seek to simultaneously 

classify test data that belong to a group of users 

subject to the constraint that each user belongs to a 

distinct class (refer to Figure 1). Thus our solution, 

originally introduced in [ 1], [2], can be interpreted as 

a solution to a constrained classification problem. 

Our solution is tailored to the setting in which the 

available information is in the form of histograms. It 

could be possible to extend this solution to more 

general kinds of data by combining the matching 

algorithm presented in this work with feature 

extraction techniques in machine learning [ 29]. 

 

D. Contributions 

Compared to existing works on the user-matching 

problem, our work is unique in several respects. Our 

main contributions can be summarized as follows: 

 We demonstrate that statistics about users’ 

behaviors contain a significant amount of 

information that can be used as fingerprints to 

uniquely identify users, by an adversary who has 

access to auxiliary information about the users. 

Moreover, we show that identification by using 

only data statistics can sometimes result in 

accuracy higher than existing methods based on 

more complicated data models (e.g., Markov 

Chains). 

 We evaluate a provably optimal algorithm for 

matching users’ statistics on three datasets of 

diverse nature and demonstrate that it 

outperforms heuristics-based methods. We 

address the practical setting of performing the 

match-ing across distinct sets of users. 

 We compare the performance of our algorithm 

with different parameters and under different 

settings, such as user configuration and data 

resolution. We verify that, in particular, 

matching users simultaneously leads to a 

matching accuracy significantly higher than 

matching one user at a time. 

 We analyze the performance of the matching 

algorithm under different privacy-preserving 

mechanisms such as data obfuscation and k-

anonymization. 

 

III.PROBLEM STATEMENT AND PROPOSED 

SOLUTION 
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We assume that the data belonging to each user in 

our system follows some fixed underlying probability 

law that is unknown a priori. The probability law 

associated with each user is unique and captures the 

habits of the user. For example, in the case of web-

browsing histories, the probability law captures the 

user’s relative preferences for various websites. 

Similarly, in the case of shopping data, the 

probability law could represent shopping preferences 

and, in the case of mobility data, the law could 

represent the preferences for visiting various 

locations. In the basic version of the user-matching 

problem, we are given two datasets corresponding to 

the same set of users, and the task is to match users 

across the two datasets by exploiting the fact that the 

underlying probability law of each user is unique. We 

will later generalize this to the setting in which the 

two datasets belong to different sets of users. 

Throughout this paper, we focus on the specific 

setting in which each dataset reveals only the 

histograms of each user’s data and not the data itself. 

We use the term adversary to denote the entity that 

performs the user-matching task. We use feminine 

pronouns for referring to the users and masculine 

pronoun for referring to the adversary. In the 

following, we state the problem mathematically. 

 

A. Problem statement 

Consider a discrete alphabet set S = {S1, S2, . . . , SK 

} of size |S| = K and a set of N users labeled 1, 2, . . . 

, N . The set S represents the set of all possible values 

that can be taken by each instance of the data 

belonging to each user. For example, in the case of 

web-browsing data, S is the set of all websites that a 

user could visit, and in the case of mobility data, S is 

the set of all possible locations (e.g., regions of a 

city) that a user could visit. For the purpose of 

illustration, in the rest of this section, we will focus 

on the example of mobility data. 

For a data string s = [s(1), s(2), . . . , s(T )] ∈ ST of 

length T , we use Γs to denote the histogram (i.e., 

empirical distribution) of the string defined as  

 
Generally during decision making process taking 

opinions from people is a common criterion.  In the 

simplest version of the user-matching problem 

studied in this paper, we are given two sets of 

histograms of the data gen-erated by each of the 

users. Let set ψ 1 = {Γx1 , Γx2 , . . . , ΓxN } 

represent a set of unlabeled histograms each 

generated by a distinct user, and let ψ2 = {Γy1 , Γy2 , 

. . . , ΓyN } represent a set of labeled histograms each 

generated by a distinct user. Here ψ1 and ψ2 

represent the histograms contained in two datasets. In 

the case of mobility data, ψ 1 is a set of anonymized 

histograms of users’ mobility traces that are released, 

and ψ2 represents the auxiliary histograms of the 

users’ mobility traces, which is obtained by an 

adversary by tracking the users over a time period. In 

other applications, the auxiliary histograms can be 

obtained by the adversary by using publicly available 

information. In both cases, the adversary is aware of 

the users’ identities in the second dataset, and seeks 

to decode the identities of the users in the first 

anonymized set of histograms. The histograms of 

each user are assumed to be statistically independent 

of those of others. Furthermore, for each user, the 

histogram generated by the user in the first dataset is 

assumed to be independent of the histogram in the 

second dataset. In the mobility example, 

independence is a reasonable assumption provided 

that there is no overlap between the time-periods over 

which the histograms in ψ 1 and ψ2 are computed. 

For example, ψ 1 contains histograms collected over 

a week and ψ 2 contains histograms collected over 

the following week. 

In the matching problem, the objective of the 

adversary is to determine the true matching between 

the histograms of ψ 1 and ψ2. We represent the 

ground truth via an unknown permutation function, 

 
such that, in reality, for each i ∈ {1, 2, . . . , N }, the 

histograms Γxσ(i) and Γyi are generated by the same 

user i . The objective in the matching problem is, 

equivalently, to estimate σ. In Section III-D, we 

discuss the practical setting where the histograms in 

the sets ψ1 and ψ2 are generated by different sets of 

users. 

 

B. Potential approach: Weighted bipartite matching 

The problem of matching histograms across two sets 

can be best visualized as a matching problem on a 

bipartite graph. Let G = (V1, V2, E ) be a complete 

bipartite graph where each vertex in the set V1 



© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002 

IJIRT 145772 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 862 

 

(respectively, set V2) is associated with a unique 

histogram in the set ψ 1 (respectively, set ψ2). There 

exists an edge from each element in V 1 to each 

element in V2 and no edges between elements in V 1 

or V2. Hence we have a complete bipartite graph 

where V 1 and V2 form the two parts. Let node j in 

set V1 and node i in set V2 be associated with 

histogram Γxj in ψ1 and Γyi in ψ2, respectively. The 

graph G is illustrated in Figure 2. 

A matching in graph G is a subset of edges E of G 

such that no two edges in the subset share a vertex. A 

maximal matching is a matching such that the 

addition of any edge to the subset violates the 

matching property. Let σm be a permutation of {1, 2, 

. . . , N }, for m = 1, 2, . . . , N !. There are N ! 

possible maximal matchings on G corresponding to 

the N ! different permutations. The matching 

corresponding to permutation σ m is the matching in 

which each node i from set V 2 is mapped to node 

σm (i) in V1; in other words, histogram Γyi in ψ2 is  

 
mapped to histogram Γxσm(i) in ψ1. The matching 

associated with σ in (2) is shown by green edges in 

Figure 2. 

An intuitive approach for estimating the correct 

matching between the histograms is as follows. 

Define a weight for every edge in G such that the 

weight of the edge w ji from j to i is equal to some 

appropriately defined distance between the 

histograms Γxj and Γyi, i.e., 

wji  = d(Γxj , Γyi)                (3) 

for some distance measure d(.). Now perform a 

minimum-weight maximal bipartite matching on the 

resultant weighted bipartite graph. The minimum-

weight maximal matching cor-responds to a 

configuration where the sum of the distances between 

the matched histograms is minimum, hence expected 

to provide a good estimate for the correct matching. 

The relevant questions that arise here are: What is a 

good choice for the distance measure between 

histograms and does the choice of measure depend on 

the nature of the data or can there be a general-

purpose measure? The literature contains various 

choices of prevalent distance measures that can be 

used in the weight function. For example, in [ 13] the 

authors use the cosine distance between the 

histograms of the number of calls of users at different 

GSM antennas as a distance measure for analyzing 

the call behavior of users. The cosine distance 

between histograms Γxj and Γyi is defines as  the 

generalized log-likelihood. The first step is therefore 

to compute the generalized log-likelihood. For 

hypothesis H m the generalized likelihood is obtained 

by maximizing the likelihood function over all 

possible choices of the πi’s, and is given by  

 

It is known that for an i.i.d.-generated string, the 

maximum likelihood estimator of the underlying 

distribution is given by the empirical distribution of 

the string. Hence, it is easy to see that each of the N 

terms in the summation (8) is maximized 

Alternatively, we can use a similarity measure, such 

as the dot product defined in (5) as the weight 

function in (3). We then identify the best permutation 

by using a maximum weight matching on the 

resultant weighted bipartite graph. In the next 

subsection, we present a new choice of the weight 

function and argue that it is a judicious choice. 

 

C. Optimal solution via hypothesis testing 

interpretation 

 

he problem of finding the matching between the his -

tograms of ψ1 and ψ2 can be viewed as a multi-

hypothesis testing problem with N ! hypotheses, {H 

1, H2, . . . , HN !}, where hypothesis Hm corresponds 

to permutation σ m , for m= 1, 2, . . . , N !. In the 

hypothesis testing framework, we study decision 

rules by using probability of error under the dif-ferent 

hypotheses as the performance metric. Typical 

solutions to hypothesis testing problems seek the 
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decision rule that leads to an optimal trade off 

between various error probabilities under the 

different hypotheses. In our prior works [ 1], [2], we 

showed that, when each user’s data is generated by 

an i.i.d. process governed by her probability law, an 

optimal trade-off between the various error 

probabilities for the matching problem is obtained by 

deciding in favor of the hypothesis corresponding to 

the minimum-weight maximal matching on the 

bipartite graph G with edge weights  

 
In (7), D(•∥•) is the Kullback-Leibler divergence 

function [ 30], defined as 

 
corresponding to the minimum-weight maximal 

matching on the complete bipartite graph G in Figure 

2 with weights (7). 

Although this optimality result was established for 

i.i.d. processes, we argue that the solution is a 

reasonable approach to use for the matching problem, 

provided that each user’s habits follow a probability 

law that is stationary and ergodic. In such cases, we 

expect the histograms of each user in the two datasets 

to be similar, hence the solution for i.i.d. data is well-

justified. Therefore, in this paper, we propose to use 

the solution given by the minimum-weight maximal 

matching on G with the weight metric in (7). We 

demonstrate, in our experiments in Section IV, that 

the matching accuracy obtained by using (7) is 

indeed higher than those obtained by using (4), (5), 

and (6) under various settings.  
via the maximum-weight matching on G. In this case, 

after negating all the edge-weight values and shifting 

them to make them positive, (A1) and (A2) can be 

used to identify the matching solution. 

 
The Hungarian algorithm [32] is a popular and 

efficient al-gorithm for (A1) and can be adapted to 

solve (A2) as explained in [31]. In our experiments, 

we use the Hungarian algorithm for (A1) and a 

polynomial-time algorithm, based on the theory of 

matroids (see, e.g., [33, Ch. 8]), for (A2). The time-

complexity of obtaining the matching solution on the 

graph G by using the Hungarian algorithm is O(|U 

1||U2||U1 ∩U2|); i.e., it is O(N 3), O(N 2N ′), and 

O(N N ′r) for (i), (ii), and (iii), respectively. In 

practice, the complexity can often be reduced 

significantly. For instance, when histograms Γxj and 

Γyi have disjoint support, then wji in (7) takes its 

maximum value, which is 2 log(2). Then the edge 

connecting the corresponding vertices in G can be 

removed, as it will almost certainly not be selected in 

the minimum-weight maximal matching. If the 

resulting graph has E edges, then the complexity is  

O(E|U1 ∩ U2|). 

In a practical implementation of this de-

anonymization ap-proach, the overall complexity 

depends on both the complexity of computing the 

edge weights in graph G and of running the matching 

algorithm (A1) or (A2) on graph G. The former has 

complexity O(N N ′K ) where K is the number of 

locations. In Section IV-D we present detailed time-
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complexity results of our de-anonymization 

approach. 

An alternative approach for solving (A1) and (A2) is 

to use an approximate minimum-weight matching 

algorithm on graph G instead of the Hungarian 

algorithm. Although finding the exact minimum-

weight matching solution has the advantage of 

obtaining the maximum matching accuracy, it brings 

the inher-ent computational complexity of weighted 

bipartite matching into our solution. This could 

hinder the applicability of our solution to very large 

datasets as the number of histograms 

becomes very large. An alternative approach in 

dealing with very large datasets is to obtain an 

approximate minimum-weight matching solution on 

graph G [ 34]. Although this approach reduces the 

matching accuracy, it makes it possible to find an 

approximate solution in reasonable time. For example 

by using the approach in [34], a (1 −ϵ)-approximate 

matching solution to (A1) in case (i) can be obtained 

with complexity O(N 2ϵ−1 log ϵ−1) instead of O(N 

3). 

IV. EXPERIMENTAL EVALUATIONS 

 

In this section we compare the performance of the 

proposed matching algorithm with other methods for 

user identifica-tion. Although numerous 

identification algorithms exist in the literature, we 

perform comparisons primarily with identifi-cation 

methods that rely only on histogram information as 

the focus of this paper is on such methods. 

Nevertheless, in Section IV-C4 we compare our 

approach with an existing Markov-based method, for 

which histograms are only a subset of the information 

available to the method. We show that by using only 

histograms we can still get better de-anonymization 

accuracy than the Markov-based approach that 

exploits more information from the dataset. 

We test our matching algorithms on three datasets of 

different nature. The first is a call-data records 

dataset, the second is a web browsing-history dataset, 

and the third is a dataset of GPS mobility traces. In 

our experiments, a location represents the coverage 

region of a GSM antenna, a website, and a region on 

the map in the first, second, and third dataset, 

respectively. We interpret the sequence of locations 

visited by a user as a data string. Thus a user’s 

histogram is simply the relative fractions of visits of 

the user to the different locations, within the time 

period considered. For each dataset, we compute the 

histograms of the users over two different non-

overlapping time periods to obtain the sets ψ 1 and 

ψ2 described in Section III-A. We then construct the 

complete bipartite graphs G shown in Figures 2, 3(a), 

and 3(b) and apply the matching algorithms proposed 

in Sections III and III-D on this graph with 

appropriately chosen edge-weights. We estimate the 

matching accuracy obtained with the different 

algorithms by calculating the percentage of common 

users (i.e., users in the set U1 ∩ U2) whose 

histograms are correctly matched. We recall that we 

focus on the privacy from the perspective of the 

adversary and not of the users; hence, this particular 

choice for notion of accuracy is reasonable. 

 

A. Experiments on call-data records (CDR) 

1) Dataset description and preprocessing: The 

call-data records (CDR) dataset consists of 

anonymized records of phone calls between 50, 000 

Orange customers (i.e., users) in Ivory Coast [35], 

chosen randomly from millions of users. The dataset 

covers the two-week period from Monday 9 th to 

Sunday 22nd of April 2012 and contains the time of 

every call made by every user and the identifier of 

the antenna to which the user was connected when 

making the call. Figure IV-A1 shows a map of Ivory 

Coast with the positions of 1237 antennas in the 

country indicated by black circles [ 35]. 
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We first split the CDR dataset into two parts, where 

part one corresponds to the calls made in the first 

one-week period from the 9th to 15 th of April, and 

part two corresponds to the calls made in the second 

one-week period from the 16 th to 22nd of April. We 

then restrict our attention only to users who are active 

in both weeks, i.e., the users who made at least one 

call in each of the two weeks. There are N = 46986 

such users, and overall they connected to K = 1211 

antennas. Each user, on average, made 101.2 calls 

and connected to 6.7 different antennas. We consider 

the coverage region of each antenna to be a location. 

We disregard the timing information of the calls and 

construct the histograms of the calling patterns of 

each user in each week. Thus, the histogram Γxσ(i) 

(respectively, Γyi) of user i in the first (respectively, 

second) week gives the relative fractions of calls 

made by the user in various locations in the first 

(respectively, second) week. The set ψ 1 

(respectively, ψ2) consists of the histograms 

computed over the first week (respectively, second 

week). 

 

2)Matching accuracy with different metrics: After 

com-puting the histograms, we construct the 

complete bipartite graph G shown in Figure 2 and 

described in Section III-B. We choose edge weights 

wji given in (7) and compute, by using (A1), a 

minimum-weight maximal matching on G. The 

obtained result is shown in the first row of Table II. 

Of 46986 users, 9927 are correctly matched, which 

gives an accuracy of 21.1%. This means that, given 

the proportions of calls of users from different 

antennas during two consecutive weeks, we are able 

to correctly match more than one-fifth of them. We 

also compare the matching accuracy obtained by 

using the distance measure (7) with the accuracy 

obtained by using the distance measures given in (4) 

and (6), as well as the similarity measure of (5). We 

observe from the table that the matching 

 

accuracy obtained by using the weight function 

proposed in ( 7) is significantly higher than that 

obtained by using any of the other heuristic measures. 

We remark that the naive approach of deciding on a 

purely random matching between the histograms 

yields, on average, one correctly matched user. The 

resulting accuracy (0.002%) is negligible compared 

to those obtained in Table II. 

 

3) Effect of varying the number N of users: In 

this ex-periment, we keep U1 = U2 but vary |U1|. We 

first choose uniformly at random a subset of the 

46986 users considered in the previous experiment. 

We denote the subset size by N . We then choose sets 

ψ1 and ψ2 to be the histograms associated with the N 

chosen users in the first week and the second week, 

respectively. We then apply (A1) to the graph G of 

Figure 2 with different choices of edge weights. For 

each value of N we repeat the experiment several 

times, choosing the subset randomly and performing 

the matching. The obtained average accuracies are 

shown in Figure 5 as a function of N for each choice 

of edge weight. We observe from Figure 5 that as the 

value of N increases, the matching accuracy under all 

metrics decreases. This is expected because as N 

increases, the habits of the users start resembling 

those of others, and it becomes more difficult to 

distinguish the histograms of one user from those of 

others. Hence, the matching accuracy decreases. 

Furthermore, although the 21.1% accuracy obtained 

with the proposed metric of (7) in Table II might 

seem small at first, it is associated with a large value 

of N . If the number of users were smaller, the 

accuracy would be higher (e.g., 78% for 1000 users). 

 

4) Matching different subsets of users  

Following the dis-cussion in Section III-D, here we 

investigate the practical scenario where the 

histograms in sets ψ 1 and ψ2 belong to different sets 

of distinct users. In other words, in this experiment 

U1  = U2. We first consider the setting in which we 

are given histograms of all users on the second week 

but only a subset of users on the first week. That is, U 

1 ⊂ U2, as depicted in Figure 3(a). 

 

We let ψ2 be the collection of histograms of all the N 

= 46986 users on the second week. For ψ 1 we use 

the collection of histograms of a randomly chosen 
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subset of users on the first week. We construct G in 

Figure 3(a) with edge weights  

 
in (7) and run (A1). The resulting matching has a size 

equal to |ψ1|. The number of correctly matched 

histograms in the set ψ1 divided by |ψ1| defines the 

obtained accuracy. Figure 6 shows the average 

number of correct matches and the average accuracy 

obtained for different values of |ψ 1|, where the 

results are averaged over several repetitions of the 

experiment. The leftmost point represents one-by-one 

user matching approach, which yields the smallest 

accuracy. From a user’s perspective, as |ψ1| 

increases, the adversary has more information 

available and thus can obtain a better matching. 

Hence, the obtained matching accuracy increases. 

This observation has important implications in the 

perspective of privacy of anonymized statistics. A 

user’s privacy depends not only on how much her 

trajectory is revealed to the adversary, but also on 

how much of others’ trajectories are revealed to the 

adversary. 

In the second part of this experiment, we consider the 

setting where |U1 ∩ U2 | = r < N . This is the setting 

depicted in Figure 3(b). We choose uniformly at 

random a set of histograms from the first week and 

from the second week, such that |U1| = |U2| = 5000, 

and |U1 ∩ U2| = 3750. We choose these values as an 

example. We then construct G in Figure 3(b) with 

edge weights given in (7). We first choose 3750 of 

the unlabeled histograms in U 1 and matched them to 

3750 of the labeled histograms in U 2, such that the 

summation of the distance between the matched pairs 

is minimized. We do this by applying (A2) with r = 

3750 to G. Alternatively, we match all the 5000 

unlabeled histograms in U1 to the labeled histograms 

in U 2 by applying (A1) to G. The obtained results 

are shown in Table III. Although the first approach 

yields a smaller number of correct matches (1340 

versus 1672 ) compared to the second approach, it 

yields a larger percentage of correct matches (36% 

versus 33%). Therefore, it makes sense to use (A2) 

instead of (A1) when the adversary is interested in 

maximizing his percentage accuracy (i.e., number of 

correct matches divided by the size of the outputted 

matching). 

5) Effect of varying the time-duration of data 

collection: We now investigate how the matching 

accuracy is affected by the time-duration over which 

users’ statistics are computed. We consider all users 

who were active on each Monday of 

The two-week period, i.e., users who made at least 

one call on Monday 9 th and on Monday 16 th of 

April. There are N= 30937 such users. In the first part 

of this experiment, the set ψ1 (respectively, ψ2) 

corresponds to the histograms of the number of calls 

of this N users from the K locations (i.e., GSM 

antennas) during the first Monday (respectively, 

second Monday). We then construct graph G 

illustrated in Figure 2 with different choices of edge 

weights, and run (A1). The obtained accuracy, 

marked on the x-axis by “Mon”, is shown in Figure 

7. 

In the second part of this experiment, we increase the 

time-duration over which we compute users’ 
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statistics. We compute the statistics of the same N 

users during the Monday and Tuesday of the first 

week and of the second week. Thus, the set ψ1 

(respectively, ψ2) now corresponds to the histograms 

of the number of calls of the N users from the K 

locations during the first (respectively, second) 

Monday and Tuesday. We then construct the graph G 

with different choices of edge weights and run (A1). 

The obtained matching accuracy, marked by “Mon-

Tue”, is shown in Figure 7. Similarly, we increase the 

number of considered days for every user and repeat 

the experiment. These results are shown in the figure 

as well. As can be seen from Figure 7, the matching 

accuracy increases as we include more days in the 

dataset. This is because as long as users’ habits 

remain stationary and ergodic, by increasing the 

time-duration over which statistics are computed, the 

two histograms belonging to each user become closer 

to each other, and thus the overall matching accuracy 

increases. Furthermore, the matching accuracy 

obtained by using the weight function proposed in (7) 

is significantly higher than that obtained by using any 

of the other heuristic measures. A standout feature in 

Figure 7 is the fact that the incremental improvement 

in going from Mon to Mon-Tue is lower than that 

observed in other data points in the graph. This is 

probably because Monday, April 9th was White 

Monday, a public holiday in Ivory Coast. On the 

following day (i.e., Tuesday 10th of April) the users 

made on average only 1.9 calls compared to the 

average of 7.2 calls per day. 

 

6) Effect of location aggregation: In addition to the 

removal of user identifiers (i.e., anonymization), an 

additional well-known privacy-protection mechanism 

that is usually applied to mobility traces is spatial-

resolution reduction, which is known also as location 

obfuscation or location aggregation [ 36], [37]. Here 

we investigate the effect of location aggregation on 

the matching accuracy.The Orange call-data records 

dataset also includes a low-spatial resolution version 

[35] that contains the time of every call made by 500, 

000 randomly chosen users and the sub-prefectures 

(i.e., administrative divisions within the provinces) of 

the antennas to which they were connected while 

making the call. The sub-prefectures, shown by 

different colors in Figure IV-A1, in general contain 

multiple antennas, thus the dataset has a spatial 

resolution lower than the original dataset. We 

consider a two-week period and randomly choose a 

subset of size N = 46986 active users out of the total 

500, 000 users. The set ψ1 (respectively, ψ2) 

corresponds to the histograms of the number of calls 

of the N users from each sub-prefectures (i.e., 

location) during the first week (respectively, second 

week). Users, in total, made calls from K = 237 sub-

prefectures. We then construct the complete bipartite 

graph G illustrated in Figure 2 with edge weights 

given in (7), and run (A1). There are 2070 correctly 

matched users, which gives an accuracy of 4.40%. 

The obtained accuracy is much lower than the 21.1% 

obtained for the same number of users in the original 

high-resolution dataset. As antennas are aggregated 

into sub-prefectures, users’ histograms become less 

distinguishable and, as a result, the matching 

accuracy drops significantly. 

 

B. Experiments on web browsing history (WBH) 

dataset 

1) Dataset description and preprocessing: The Web 

His-tory Repository [38] consists of anonymized 

detailed web browsing history of hundreds of users. 

Users can upload their anonymized usage data to the 

repository by using a Mozilla Firefox add-on. In 

order to protect the users’ privacy, all URLs and 

hosts are represented by a global unique identifier. 

The web browsing history (WBH) dataset contains 

the browsing history of 472 users. Users participated 

in the data collection for different time-periods 

during the course of several years. For each user, the 

dataset contains every visited URL (with en-crypted 

name), the favicon identifier associated with the 

URL, and the time of visit to the URL. The favicon, 

also known as a shortcut icon, is a small icon 

associated with a particular website. Generally, 

different URLs associated with the same website 

(e.g., domain name) have the same favicon and hence 

can be mapped to a single website. For example, if a 

user visits the URLs “news.yahoo.com” and 

“mail.yahoo.com”, the URLs will appear with 

different encrypted names in the database; however, 

both URLs will have the same favicon 

  



© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002 

IJIRT 145772 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 868 

 

Fig. 8. The total number of visits (i.e., popularity) to 

the K websites by all the users in the two-week 

period. The figure is plotted in a log-log scale and the 

websites are indexed according to their popularity. 

identifier (e.g., “1”). Thus, we can learn that the user 

has visited a particular website (i.e., “yahoo.com”) 

twice. 

We remove from the dataset all URLs that do not 

have a favicon. We consider each website (e.g., 

“yahoo.com”) to be a location and treat the favicon 

identifier as the website identifier for each URL. We 

then identify the period of two consecutive weeks 

that has the maximum number of active users (i.e., 

users who visit at least one website during each of the 

two weeks). There are N = 121 active users in this 

two-week period. They visited K = 83219 different 

websites, 77935 of which were visited by not more 

than one user. Figure 8 shows a log-log plot of the 

total number of visits to the websites by all the users 

in the two-week period. The y-axis values represent 

the popularity of the websites. 

We disregard the timing information of the visited 

websites and construct the histograms of the 

browsing patterns of each user in each week. Thus, 

the histogram Γxσ(i) (respectively, Γyi) of user i in 

the first (respectively, second) week gives the relative 

fractions of the visits to various websites by that user 

in the first (respectively, second) week. The set ψ 1 

(respectively, ψ2) consists of the histograms 

computed over the first week (respectively, second 

week). 

 

2)Matching accuracy with different metrics: We 

construct the graph G shown in Figure 2 from the 

histograms and apply (A1) to G with different 

choices of edge weights. The obtained results are 

shown in the second row of Table II. We observe that 

the matching accuracy obtained by using the weight 

function proposed in (7) is significantly higher than 

that obtained by using any of the other heuristic 

measures. Furthermore, given the proportions of 

visited websites during two consecutive weeks, we 

are able to correctly match almost all of them. 

 

3)Considering popular websites: One reason we 

obtain a high matching accuracy is that some 

websites are visited by only a small number of users 

during the two-week period, hence it is easy to match 

those users. We investigate this effect as follows. We 

consider all users who visited at least one of the top 5 

popular websites, in Figure 8. There are N = 102 such 

users. We consider a subset (of size not less than 5) 

of the most popular of the visited websites (refer to 

Figure 8). We then keep for every user i (1 ≤ i ≤ 102) 

the elements of Γxσ(i) and Γyi that correspond to the 

considered subset of websites, and we set the 

remaining elements equal to zero. We then re-

normalize the remaining histograms such that they 

sum to one. We reconstruct, by using different 

choices of edge weights, the bipartite graph G in 

Figure 2 and run 

 
(A1) on the graph. We repeat the experiment by 

varying the size of the considered subset of popular 

websites. The result is shown in Figure 9. As 

expected, as fewer websites are considered, we have 

less information available for matching; hence the 

matching accuracy drops. However, by considering 

merely the top 60 most popular websites, we can still 

correctly match more than 50% of users. Moreover, 

as in Table II, the matching accuracy obtained by 

using the weight function in ( 7) is consistently 

higher than that obtained by using any of the other 

heuristic measures. 

 

C. Experiments on GeoLife (GL) GPS dataset 

1)Dataset description and preprocessing: The Geolife 

(GL) dataset [39] contains the GPS traces of 182 

users collected over five years. The user traces in this 

dataset are represented by a sequence of time-

stamped points, each of which contains the 

information of latitude and longitude. The trajectories 

are widely distributed over many cities in China and 

even some in the USA and Europe, but the majority 

of the data is created in the city of Beijing. In our 

experiments, we focus on the trajectories collected 

within the 5th ring road of Beijing, which is an area 

approximately 39 km × 39 km. We first grid this area 
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into 100 m × 100 m squares. Each square represents a 

location. Figure 10(a) shows the considered area, 

where all the locations with a recorded GPS position 

are darkened. We call a particular one-week period 

active for a user if she has at least one recorded GPS 

position during the week. Figure 10(b) shows the 

active weeks for each user during the data collection 

campaign. As can be seen from Figure 10(b), the 

users contributed to the dataset during different 

periods. 

We filtered out all users with number of active weeks 

equal to 1 and were left with N = 154 users. The 

users have on aver-age 15.4 active weeks of data. We 

split each user’s trajectories into two parts, where 

part one corresponds to the trajectories recorded in 

the first half of her active weeks, and part two 

corresponds to the trajectories recorded in the second 

half of her active weeks. We construct histograms of 

the locations visited by each user in each week. Thus, 

the histogram Γ xσ(i) (respectively, Γyi) of user i in 

the first (respectively, second) part gives the relative 

fractions of recorded GPS positions from 

 

various locations (i.e., grid squares on the map) in the 

first (respectively, second) part of her data. The set ψ 

1 (respectively, ψ2) corresponds to the histograms of 

the number of recorded GPS positions of the N users 

from the K locations in their first parts (respectively, 

second parts). 

 

2) Matching accuracy with different metrics: We set 

the side length of grid squares equal to 1000 m, and 

we compute the histograms and apply (A1) to the 

graph G of Figure 2 with different choices of edge 

weights. The obtained matching accuracy, when the 

side length of grid squares is 1000 m, is shown in the 

last row of Table II. The accuracy obtained by using 

the weight function proposed in ( 7) is significantly 

higher than that obtained by using any of the other 

heuristic measures. 

 

3) Effect of spatial resolution: We repeat the previous 

experiment with varying choices for the side lengths 

of grid squares. The resulting matching accuracies 

are shown in Figure 11 as a function of the side 

lengths. For very large side-lengths, the spatial 

resolution is low, hence the users’ location traces are 

easily confused, thus leading to low matching 

accuracy. For very small side-lengths, there are too 

many locations in the sense that the inherent noise in 

the GPS trajectories come into effect, which leads to 

an over-fitting of the data, and thus the matching 

accuracy is again low. Therefore, the accuracy is 

maximum for moderate side-lengths– around 100 m 

in the figure. 

4) Comparison with existing work: In [17] the 

authors propose a de-anonymization scheme based on 

a mobility model called the Mobility Markov Chain 

(MMC) and applied it to the GL dataset. In their 

approach, an MMC is constructed for each user from 

her mobility traces observed during the training phase 

and during the test phase. Distance metrics between 

MMCs are then used to link a user’s trace from the 

test phase to the corresponding trace in the training 

phase. There are three main differences between their 

approach and ours. First, in their approach, the set of 

locations that a user visits is learned by applying a 

clustering algorithm to the user’s GPS trajectories. 

The clustering algorithm identifies the accumulation 

regions of the user’s trajectory that is then used to 

represent the set of locations that the user visits, 

whereas in our approach, we partition the map area 
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into squares that represent the set of locations. 

Second, they use the timing information present in 

the users’ trajectories to learn the MMCs, whereas in 

our case we disregard all the timing information 

present in the trajectories and only consider the 

fraction of visits to different locations. Third, they 

de-anonymize the users one-by-one, whereas we 

simultaneously de-anonymize all the users. 

In [17], the authors report a de-anonymization 

accuracy of up to 45% on 77 users in the setting 

where the regions identified from the clustering 

algorithm have a maximum radius equal to 500 m. In 

comparison, our scheme obtains a de-anonymization 

accuracy of up to 60% for 154 users in the setting 

where the side lengths of grid squares range from 300 

m to 1000 m. If we do one-by-one user de-

anonymization, this accuracy drops down to 50%, 

however it still remains higher than the 45% reported 

in [17]. We believe that this is because by using a 

complicated and dynamic model such as MMC, there 

is a substantial over fitting of the user data to the 

model. In [17], a K × K transition probability matrix 

is fitted to each trace, whereas in our approach a K -

length probability vector is fitted. This leads to 

poorer performances because the model learned from 

the first dataset does not “generalize” well to the 

second dataset. 

 

D. Running time 

Here we present the timing information of 

performing the de-anonymization attacks that are 

given in Table II. We consider only the case where 

our proposed metric is used. The running times are 

given for MATLAB version 8.3.0.532 running on a 

Lenovo Thinkpad T410 equipped with Intel i7 

processor with clock speed of 2.67 GHz, with 8 Gb 

of RAM, and with Microsoft Windows 7 64-bit 

operating system. 

The running time for computing the edge weights (w 

ji in (7)) of graph G and for running (A1) on G are 41 

min and 432 min, respectively, for the CDR dataset. 

The respective numbers for the WBH dataset are 6 

sec and 0.1 sec for computing the edge weights of G 

and for running (A1) on G, respectively, The 

respective numbers for the GL dataset are 0.9 sec and 

0.2 sec for computing the edge weights of G and for 

running (A1) on G, respectively. Note that the 

reported numbers do not include the preprocessing 

time, that is, the time required for computing the 

histograms from the raw data. 

 

V. PRIVACY ENHANCING MECHANISMS 

 

We demonstrated by our experiments in Section IV 

that applying anonymization to histograms of users’ 

behavior is not effective in protecting the users’ 

identities from an adversary who has access to 

auxiliary knowledge about the users. In this section, 

we discuss additional privacy-preserving mechanisms 

that can be applied to the histograms in order to make 

it difficult for the adversary to identify the users. 

These mechanisms essentially make the released 

histograms closer to each other so that there is greater 

scope for confusion in distinguishing them from each 

other, and thus the matching accuracy declines. 

 

A. Basic data coarsening and data suppression 

Two popular categories of privacy-preserving 

mechanisms are data obfuscation and data 

suppression methods [ 40]. An example of data 

coarsening is spatial resolution reduction, which can 

be achieved by aggregating different locations into 

one. We investigated the latter in our experiments in 

Section IV-A6 and in Figure 11. Data suppression is 

the process of restricting the released data associated 

with each user. For example, in our experiment in 

Figure 9 for the WBH dataset, we consider only the 

subset of popular websites (i.e., websites that are 

visited by most users) and publish the histograms 

values associated with this subset. Another example 

is time-domain restriction, which refers to the process 

of limiting the time-period over which the histograms 

are computed. We investigated this approach in our 

experiment in Figure 7 for the CDR dataset. Another 

popular privacy-preserving mechanism is k -

anonymization, which we investi-gate in the next 

subsection. 

 

B. k-Anonymization via micro-aggregation 

A released dataset is said to have the k-anonymity 

property if the data for each user contained in the 

dataset is identical to the data for at least k −1 other 

users [41]. One mechanism for guaranteeing k-

anonymity for a dataset is by means of micro-

aggregation [42]. In micro-aggregation, users’ data 

are parti-tioned into different clusters such that each 

cluster contains data of at least k users. The average 
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of the data within each cluster is computed and then 

used to replace the original data values of all the 

users within the cluster. These new data values are 

then released, resulting in a dataset with the k -

anonymity property. In micro-aggregation, the 

partitioning is done by using a criterion of minimum 

within-cluster information loss, and it has been 

shown that finding the optimal partitioning is NP-

hard [43]. In the following, we define micro-

aggregation in mathematical terms, and describe how 

our matching method can be adapted to de-

anonymize micro-aggregated histograms of users’ 

data. 

1) Micro-aggregation: Let {C 1, C2, . . . , Cg } be a 

partition-ing of the users U1 (i.e., the users who 

generate the histograms ψ1) into g clusters. That is, 

U1 = ∪gq=1Cq and Cq ∩ Cq′ = ∅ for q  =q′. We later 

elaborate on the criteria for choosing the 

set {Cq }1≤q≤g . Furthermore, define k = min1≤q≤g 

|Cq |, and 

 
for 1 ≤ q ≤ g, which represent the average of 

histograms of all users within each cluster. In micro-

aggregation, instead of releasing the set of histograms 

ψ , the set of micro-aggregated 

 
when ψ1 is released, every user in set U1 is 

guaranteed k-anonymity. 

Although micro-aggregation guarantees k-anonymity 

to the users, it distorts the released dataset. 

Specifically, every his- 

 

The extreme case, L = 0, represents the scenario 

where no micro-aggregation is performed (i.e., g = N 

) and where all users are guaranteed 1-anonymity. 

The other extreme case, L = 1, represents the scenario 

where g = 1 and where all users are guaranteed N -

anonymity. For a given value of k, we seek the 

partitioning {Cq }1≤q ≤g whose normalized 

information loss L given in (11) is as small as 

possible. In our following experiment, we use the 

algorithm proposed in [44] for performing micro-

aggregation, where we adapt the algorithm to 

measure the distortion by using l 1-norm. 

 

2) Experimental evaluations: Here we evaluate the 

effec-tiveness of the matching algorithm when micro-

aggregation is performed on the unlabeled histograms 

ψ 1. We consider an adversary who has acces s to the 

labeled histograms ψ 2 and is interested in matching 

these histograms to the micro- aggregated ones in ψ1. 

We consider two different notions of accuracy for the 

matching. Let the labeled histogram Γ yi be matched 

to the unlabeled micro-aggregated histogram Γxj . 

According to our first notion, there is a correct match 

if j= σ(i), where σ is defined in (2). According to our 

second notion, there is a correct match if Γxj = Γxσ(i) 

. The former notion of accuracy (called user-level) 

measures the number of correctly matched users and 

is the same notion that we used in our experiments in 

Section IV, whereas the latter notion (called cluster-

level) measures the number of users whose k-

anonymity class (i.e., cluster) is correctly identified. 

For the CDR dataset, we consider the setting 

described in Section IV-A3. In particular, we 

randomly choose N = 1000 out of the 46986 users 

and construct the sets ψ 1 and ψ2. For the WBH 

dataset, we consider the subset of the top K = 100 

popular websites and construct the sets of histograms 

ψ 1 and ψ2 as described in Section IV-B3. For the 

GL dataset, we 
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consider the setting described in Section IV-C2 when 

grid side-length is set equal to 1000 m. 

For each dataset, we perform micro-aggregation with 

differ-ent values of k on the set ψ1. We then perform 

the matching between ψ1 and ψ2 by using only the 

proposed metric of ( 7). The obtained accuracies are 

shown in Figure 12(a) and 12(b) and 12(c) for the 

CDR, WBH, and GL dataset, respectively. The 

figures also show the normalized information loss L 

defined in (11) and the normalized number of clusters 

(i.e, g/N ), expressed in percentages. In the extreme 

case with k = 1, no micro-aggregation is performed; 

therefore, g = N , L = 0, and the user-level accuracy 

is equal to the cluster-level accuracy. In the other 

extreme case, k = N , and all the released unlabeled 

histograms are identical; therefore, the information 

loss is maximum (L = 1), and while the user-level 

accuracy is minimum, the cluster-level accuracy is 

maximum. As k increases to about 10, the user-level 

accuracy dramatically drops, hence the users enjoy an 

increased level of privacy guarantee, whereas the 

cluster-level accuracy remains almost the same for all 

values of k. 

VI. CONCLUSION 

 

We have studied the task of identifying users from 

the statistics of their behavioral patterns. Specifically, 

given an anonymized dataset in the form of 

histograms belonging to a set of users and another 

independent set of histograms generated by the same 

set of users, we have shown that it is possible to 

identify the identities of the users in the first dataset 

to a surprising level of accuracy by matching the 

statistical characteristics of the users’ behaviors 

across the two datasets. Thus data histograms act as 

fingerprints for identifying users. 

Our proposed solution can be implemented via a 

minimum-weight maximal matching algorithm on a 

complete weighted bipartite graph and yields higher 

accuracy than heuristics-based methods on three 

different datasets of different nature. We have studied 

the performance of the algorithm over a wide range 

of experimental conditions and demonstrated the 

effect of various factors, such as the number of users, 

the resolution of the data, the duration of the data 

collection, and the amount of data suppressed, on the 

accuracy of the matching algorithm. We have gained 

the insight that the simultaneous matching of the 

users yields higher accuracy compared to one-by-one 

user matching. Furthermore, we have demonstrated 

the power of simplicity of statistics: Identification 

based only on data statistics can sometimes result in 

higher accuracy than existing methods based on more 

complicated data models. We have further studied the 

performance of the algorithm under privacy-

enhancement techniques, such as k-anonymization, 

and demonstrated the effect of k on the matching 

accuracy. Our results suggest that users can be 

identified, to a sur-prisingly high level of accuracy, 

even from the statistics of their behavior. Moreover, 

using the correct metric and optimal matching 

algorithm can lead to a significant improvement in 

matching accuracy over heuristics -based methods. 

Privacy enhancement via k-anonymization and data 

obfuscation can reduce identification accuracy, but 

the accuracy remains non-negligible for moderate 

levels of data distortion. 
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