
© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 911

TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-

EFFICIENT CLOUDS

G. Mahidhar Sai , Dr. M. Sreedevi

Student, Dept. of Computer Science, SVU College of CM & CS, SV University, Tirupati.

Abstract- Cloud computing as an emerging technology trend

is expected to reshape the advances in information

technology an Efficient Information Retrieval for Ranked

Queries (EIRQ) scheme is recovery of ranked files on user

demand. An EIRQ worked based on the Aggregation and

Distribution Layer (ADL). An ADL is act as mediator

between cloud and end-users. An EIRQ scheme reduces the

communication cost and communication overhead. Mask

Matrix is used to filter out as what user really wants

matched data before recurring to the Aggregation and

Distribution Layer (ADL). A user can retrieve files on

demand by choosing queries of different ranks. This feature

is useful when there are a large number of matched files, but

the user only needs a small subset of them. Under different

parameter settings, extensive evaluations have been

conducted on both analytical models and on a real cloud

environment, in order to examine the effectiveness of our

schemes To avoid small scale of interruptions in cloud

computing, follow two essential issues: - Privacy and

Efficiency. Private keyword based file retrieval scheme was

anticipated by Ostrovsky.

Index Terms- Cloud Computing, Cost Efficiency, Differential

Query Services, Privacy.

I. INTRODUCTION

Cloud computing technology is a most necessary

technology for information technology. Many more

organizations are used cloud computing for outsource

sharing. The organizations needs to submit access the

services of cloud and authorizes organizations workers to

split files in the cloud. Each and every file is described by

place keywords. The authorized workers at an

organization can access the data of their benefits by

querying from the cloud with particular keywords. In

Cloud environment, user privacy can be protected on

every transaction. User privacy is categorized by 2 types.

They are search privacy and access privacy. Search

privacy is a process of searching, but cloud doesn‟t know

anything about what user really searching for and Access

privacy is searching technique. Here cloud knows about

what user really searching on search engine. Private

searching was introduced by ostrovsky scheme allows to

users to recover data from the un-trusted servers n leakage

of data. Ostrovsky scheme is lofty computational outlay,

because the cloud need to process keywords in the each

and every file in the cloud. The user can send a query to

every time to process the query. Because of this process

the cloud is over headed queries from the many users

from different organization. Through this process the

communication and computation beyond the expectation.

Private searching was proposed by Ostrovsky et al. Which

allows a user to retrieve files of interest from an untrusted

server without leaking any information otherwise; the

cloud will learn that certain files, without processing, are

of no interest to the user.

Commercial clouds follow a pay-as-you-go model,

where the customer is billed for different operations such

as bandwidth, CPU time, and so on. Solutions that incur

excessive computation and communication costs are

unacceptable to customers. To make private searching

applicable in a cloud environment, our previous work

designed a cooperate private searching protocol (COPS),

where a proxy server, called the aggregation and

distribution layer (ADL), is introduced between the users

and the cloud. The ADL deployed inside an organization

has two main functionalities: aggregating user queries and

distributing search results. Under the ADL, the

computation cost incurred on the cloud can be largely

reduced, since the cloud only needs to execute a

combined query once, no matter how many users are

executing queries. Furthermore, the communication cost

incurred on the cloud will also be reduced, since files

shared by the users need to be returned only once. Most

importantly, by using a series of secure functions, COPS

can protect user privacy from the ADL, the cloud, and

other users. In this paper, we introduce a novel concept,

differential query services, to COPS, where the users are

allowed to personally decide how many matched files will

be returned.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 912

This is motivated by the fact that under certain cases,

there are a lot of files matching a user‟s query, but the

user is interested in only a certain percentage of matched

files In the Ostrovsky scheme, the cloud will have to

return 2,000 files. In the COPS scheme, the cloud will

have to return 1,000 files.

Aggregation and Distribution Layer: An ADL is deployed

in an organization that authorizes its staff to share data in

the cloud. The staff members, as the authorized users,

send their queries to the ADL, which will aggregate user

queries and send a combined query to the cloud. Then, the

cloud processes the combined query on the file collection

and returns a buffer that contains all of matched files to

the ADL, which will distribute the search results to each

user. To aggregate sufficient queries, the organization

may require the ADL to wait for a period of time before

running our schemes, which may incur a certain querying

delay. In the supplementary file, we will discuss the

computation and communication costs as well as the

querying delay incurred on the ADL.

Ranked Queries: To further reduce the communication

cost, a differential query service is provided by allowing

each user to retrieve matched files on demand.

Specifically, a user selects a particular rank for his query

to determine the percentage of matched files to be

returned. This feature is useful when there are a lot of

files that match a user‟s query, but the user only needs a

small subset of them.

In our scheme, the cloud only needs to return 200 files. Because of this process to reduce the communication cost and

Therefore, by allowing the users to retrieve matched files on query overhead.

demand, the bandwidth consumed in the cloud can be largely

reduced. Efficient Information retrieval for Ranked Query A. Module Description

(EIRQ), in which each user can choose the rank of his query Differential Query Services: We introduce a novel concept,

to determine the percentage of matched files to be returned. differential query services, to COPS, where the users are

The basic idea of EIRQ is to construct a privacy-preserving allowed to personally decide how many matched files will be

mask matrix that allows the cloud to filter out a certain returned. This is motivated by the fact that under certain

percentage of matched files before returning to the ADL. This cases, there are a lot of files matching a user‟s query, but the

is not a trivial work, since the cloud needs to correctly filter user is interested in only a certain percentage of matched

out files according to the rank of queries without knowing files. To illustrate, let us assume that Alice wants to retrieve

anything about user privacy. Our key contributions are as 2% of the files that contain keywords “A, B”, and Bob wants

follows: to retrieve 20% of the files that contain keywords “A, C”. The

 We propose three EIRQ schemes based on the ADL to cloud holds 1,000 files, where {F1, . . . , F500} and {F501, . . . ,

 provide a cost-efficient solution for private searching in F1000} are described by keywords “A, B” and “A, C”,

 cloud computing. respectively. In the Ostrovsky scheme, the cloud will have to

 The EIRQ schemes can protect user privacy while return 2, 000 files. In the COPS scheme, the cloud will have

to return 1, 000 files. In our scheme, the cloud only needs to

 providing a differential query service that allows each

return 200 files. Therefore, by allowing the users to retrieve

 user to retrieve matched files on demand.

matched files on demand, the bandwidth consumed in the

 We provide two solutions to adjust related parameters;

cloud can be largely reduced.

 one is based on the Ostrovsky scheme, and the other is

 based on Bloom filters.
Efficient Information Retrieval for Ranked Query: We

 Extensive experiments were performed using a

propose a scheme, termed Efficient Information retrieval for

 combination of simulations and real cloud deployments

 Ranked Query (EIRQ), in which each user can choose the

to validate our schemes.

 rank of his query to determine the percentage of matched files

The remainder of this paper is organized as follows. to be returned as shown in Fig.1. The basic idea of EIRQ is to

construct a privacy preserving mask matrix that allows the

Architecture in SectionII Proposed Model in SectionIII. We

cloud to filter out a certain percentage of matched files before

conduct evaluations in SectionIV. Finally, we conclude this

returning to the ADL. This is not a trivial work, since the

paper in SectionV.

cloud needs to correctly filter out files according to the rank

 of queries without knowing anything about user privacy.

Focusing on different design goals, we provide two

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 913

II. ARCHITECTURE

Co-operate searching protocol (cops) is like a proxy server

extensions: the first extension emphasizes simplicity by
called as aggregation and distribution layer (ADL) is placed

requiring the least amount of modifications from the
inside an organization. This ADL is act as a mediator

Ostrovsky scheme, and the second extension emphasizes
between the cloud and an organization. The functioning of

privacy by leaking the least amount of information to the
ADL is the aggregation and distribution. The ADL only

reduces the computation cost. cloud.

Fig.1. Architecture of EIRQ.

The working of an ADL is the many users can send many

queries to ADL. Then adl can aggregate the different

user‟s queries makes into a single query and then sends to

cloud. The cloud will process the query sends response to

ADL. Then the adl will distribute the results to particular

users.

III. PROPOSED MODEL

Here introduce a major concept differential query

services. Where users are sends the queries to the cloud

and process the query sends results to users as shown in

Fig.2. Lot of files is matched users query. But the user

doesn‟t want that files, only they interested on certain

percentage of files.

 This process is going on both wired network

and wireless network also. First send request

from the user to cloud for establishment of a

connection form the cloud. Then authorized user

should have their own login name and

passwords.

 After login to user Generate a query. This

query is encrypted into 0‟s and 1‟s and then

sends to cloud. At the cloud side Private Search

has been done. So those find out the matched

files.

 Cloud sends the matched files to encrypted

buffer. Then Files are recovered at the user side.

This scheme is very query overhead as well as

every time accesses the broadband connection.

This process is more costly to accessing files at

every query.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 914

Fig.2. EIRQ Model.

In the proposed model have the cloud, organization

and ADL. ADL is placed inside the organization based on

requirement of number users. In this model used only

single ADL inside an organization. Assume an

organization have two users. They are Jack and Jan. They

want files from the cloud. The Jack and Jan want files

which are starts with the letters J, K and J, N respectively.

The design goals of this scheme are Cost Efficiency and

User Privacy. We achieve these goals by using Bloom

Filters. Ostrovsky Scheme: The Ostrovsky scheme is a

process of accessing the files from cloud to clients as

shown in Fig.3. This process has the following steps:

EIRQ Scheme: The EIRQ scheme is a process of

recover the files from cloud to clients as shown in Fig.4.

This process has the following steps:

Fig.3. Working process of Ostrovsky Scheme.

 Ostrovsky Scheme having the user and cloud. The

users are only authorized from the cloud network,

and then only accessing is possible otherwise it is

not possible.

Fig.4. Working process of EIRQ Scheme.

 The EIRQ Scheme having the user and cloud. The

users are only authorized from the cloud network,

and then only accessing is possible otherwise it is

not possible.

 This process is going on both wired network and

wireless network also. First send request from the

user to ADL for establishment of a connection

form the ADL. Then authorized user should have

own login name and passwords.

 After login to user generate a query. This query is

encrypted into 0‟s and 1‟s and then sends to ADL.

At the ADL side Matrix Construct Algorithm has

been done based on that Keywords and Ranks. This

process we called as Aggregation.

 After the aggregation process, ADL sends the

Mask Matrix to Cloud. At cloud side File Filter

Algorithm has been done. This algorithm filter out

the files based on the Ranks and keywords.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 915

IV. EVALUATION

In this section, we will compare three EIRQ schemes

from the following aspects: file survival rate and

computation/ communication cost incurred on the cloud.

Then, based on the simulation results, we deploy our

program in Amazon Elastic Compute Cloud (EC2) to test

the transfer-in and transfer-out time incurred on the cloud

when executing private searches. Note that the energy

performance trade-off is crucial to the success of cloud

computing, and existing energy-saving techniques are

hard to directly extend to a cloud environment. As part of

our future extensions, we will evaluate the consumed

energy overhead in the cloud to verify the effectiveness of

our schemes. We use No Rank to denote unranked queries

under the ADL. The summary of the experiment

parameters are shown in Table 1.

TABLE I: Parameters

Fig.5. File survival rate under Ostrovsky setting.

A. File Survival Rate

Since queries are classified into 0 ~ 4 ranks, queries in

Rank-0, Rank-1, Rank-2, Rank-3, and Rank-4 should

retrieve 100%, 75%, 50%, 25%, 0% of matched files,

respectively.

Fig.6. File survival rate under Bloom filter setting.

However, in Fig.5, the real failure rate in EIRQ-Simple

and EIRQ-Privacy under the Ostrovsky parameter setting

is much lower than i/r, and thus, the real file survival rate

is higher than the desired value of 1 − i/r (about 25% and

50% of files are redundantly returned to users); Only

EIRQ-Efficient, which filters a certain percentage of

matched files before mapping them to a buffer, provides

differential query services. Under the Bloom filter

parameter setting, we first obtain corresponding mapping

times. Specifically, for file survival rate 100%, 75%,

50%, 25%, we have the optimal mapping times 7, 2, 1,

0.4, respectively. Based on these values, the buffer size

can be calculated different schemes. In practice, γ and β

must be integers. Thus, we use └γ┘ and

└β┘ to replace the corresponding values. Using these

parameters, the file survival rates for different ranks are

shown in Fig.6, where three EIRQ schemes can provide

differential query services, and no bandwidth is wasted in

each EIRQ scheme. Therefore, in terms of file survival

rate, the Bloom filter parameter setting can achieve better

performance than the Ostrovsky parameter setting.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 916

Fig.7. Comparison of computational cost at the cloud

the x-axis denotes the number of queries in each rank,

and the y-axis denotes the computation time (s). (a)

Bloom filters parameter setting. (b) Ostrovsky

parameter setting.

B. Computational Cost

As the computational cost is mainly determined by the

number of exponentiations performed by the cloud, which

is almost the same under the Bloom filter and the

Ostrovsky parameter settings. In order to justify the

analyses, we will compare the computational cost

between No Rank and three EIRQ schemes. The

comparisons of computational cost on the cloud are

shown in Fig. 5, where the number of queries in each rank

ranges from 1 to 25. In Fig. 7-(a), under the Bloom filter

parameter setting, the computational cost is

approximately 14.807s in No Rank, 59.274s in EIRQ

Simple, 101.075s in EIRQ-Privacy, and 14.861s in EIRQ

Efficient. In Fig.7-(b), under the Ostrovsky parameter

setting, the computational cost approximately ranges from

14.8270s to 14.8788s in No Rank, from 59.1671s to

59.3838s in EIRQ-Simple, from 114.0475s to 176.5107s

in EIRQ-Privacy, and from 14.8664s to 14.9269s in EIRQ

Efficient. In both settings, EIRQ-Privacy consumes the

most computation cost, and EIRQ-Efficient, like No

Rank, consumes the least computation cost.

C. Communication Cost

As the communication cost mainly depends on the

buffer size generated by the cloud, which is calculated in

different ways under different parameter settings.

Furthermore, the buffer size depends on the number of

files that match the queries, which is different when users

have different common interests, i.e., the average number

of common keywords

among user queries. Therefore, in different parameter

settings, we will analyze the buffer size under different

common interests. In the following experiments, 1

common keyword, 2 common keywords, and 4 common

keywords denote that the average common keywords

among user queries are 1, 2, and 4, respectively; random

keywords denote that each user randomly chooses

keywords for its query.

Fig.8. Comparison of communication cost under the Bloom filter setting the x-axis denotes the number of queries in

each rank and the y-axis denotes the buffer size (KB). (a) 4 common keywords; (b) 2 common keywords; (c) 1 common

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 917

keyword; (d) random keywords.

Fig.9. Comparison of communication cost under the Ostrovsky setting the x-axis denotes the number of queries in each

rank and the y-axis denotes the buffer size (KB). (a) 4 common keywords; (b) 2 common keywords; (c) 1 common

keyword; (d) random keywords.

From Figs. 8 and 9, we know that the EIRQ schemes

perform better under the Bloom filter setting compared to

under the Ostrovsky setting. Under the Bloom filter

setting, all of the EIRQ schemes consume less

communication costs than No Rank, e.g., EIRQ-Efficient,

EIRQ Privacy, and EIRQ-Simple can further reduce

communication costs by about 50%, 35%, and 30%

compared to No Rank, respectively, when the queries

share 4 common keywords. Under the Ostrovsky setting,

EIRQ-Simple always consumes more bandwidth than No

Rank, and EIRQ-Privacy only performs better than No

Rank under certain conditions. In both settings, the EIRQ

schemes consume less bandwidth as the common interests

among users increase. For example, when there are 25

users in each rank under the Bloom filter setting, EIRQ-

Efficient only generates a 1MB buffer under 4 common

keywords, but 3MB under 1 common keyword.

Notice that in both settings, EIRQ-Efficient always

has the best performance, the next is EIRQ-Privacy, and

the last is EIRQ-Simple. Furthermore, EIRQ-Efficient

works better than No Rank when only a few users are

conducting searches. For example, when there are 5

queries with 4 common keywords, EIRQ-Efficient

generates a buffer of size 274KB, but No Rank generates

a buffer of size 467KB, under the Bloom filter setting;

EIRQ Efficient generates a buffer of size 439KB, but No

Rank generates a buffer of size 834KB under the

Ostrovsky setting. When there are 5 queries in each rank

with 1 common keyword, EIRQ-Efficient generates a

buffer of size 687KB, but No Rank generates a

buffer of size 1513KB, under the Bloom filter

setting; EIRQ-Efficient generates a buffer of size

1309KB, but No Rank generates a buffer of size 3194KB,

under the Ostrovsky setting. However, under the

Ostrovsky parameter setting, the mapping times depend

on the number of matched files, which in turn depends on

the common interests among queries. The comparisons of

transfer-in time are shown in Fig. 10.

Fig.10. Comparison of transfer-in time. (a)

Comparison under Bloom filter setting; (b) EIRQ-

privacy under Ostrovsky setting.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 918

Fig.11. Transfer-out time in real cloud under the

Bloom filter setting. The x-axis denotes the number of

users, and the y-axis denotes transferring time (s). (a)

4 common keywords; (b) 1 common keyword.

D. Transfer Time in a Real Cloud

To verify the feasibility of our schemes, we deploy

our program in Amazon EC2, to test the transfer-in

(receiving query) and transfer-out (sending buffer) time at

the cloud. The local machine has an Intel Core 2 Duo

E8400 3.0 GHz CPU and 8 GB Linux RAM. We

subscribe EC2 amzn-ami-2011.02.1.i386-ebs (ami-

8c1fece5) AMI and a small type instance with the

following specifications: 32-bit platform, a single virtual

core equivalent to 1 compute unit CPU, and 1.7 GB

RAM. The average bandwidth from EC2 to the local

machine is 33.43 MB/s, and from the local machine to

EC2 are 42.98 MB/s. First, we test the transfer-in time in

the real cloud, which is mainly incurred by receiving

queries from the ADL. Under both parameter settings, the

query size for No Rank, EIRQ-Simple, EIRQ-Privacy,

and EIRQ Efficient can be calculated with O(d), O(r · d),

O(max γi · d), and O(r · d), respectively. Given d = 100, r

= 4, and |w| = 1KB, the query size for No Rank, EIRQ-

Simple, and EIRQ-Efficient is about 100KB, 400KB, and

400KB, respectively. For EIRQ-Privacy, the mapping

times are calculated in different ways under different

parameter settings. Under the Bloom filter parameter

setting, the mapping times are 7, 4, 1, 1, respectively, and

thus the query size is about 700KB.

Fig.12. Transfer-out time in real cloud under the

Ostrovsky setting. The x-axis denotes the number of

users, and the y-axis denotes the transferring time (s).

(a) 4 common keywords; (b) 1 common keyword.

Then, we test the transfer-out time at the cloud, which

is mainly incurred by returning files to the ADL. The

results are shown in Figs.11 and 12. In all cases, EIRQ

Efficient consumes the least amount of transfer time, and

EIRQ-Simple works better than No-Rank under the

Bloom filter setting. For example, under the Ostrovsky

scheme, No-Rank consumes from 83.6s to 1191.8s, EIRQ

simple consumes from 189.8s to 1597.6s, EIRQ-Privacy

consumes from 83.3s to 1099.9s, and EIRQ-Efficient

consumes from 57.4s to 475.1s when there are 4 common

keywords; No-Rank consumes from 191.1s to 3857.5s,

EIRQ-simple consumes from 181.5s to 5369.7s, EIRQ

Privacy consumes from 161.8s to 3323.4s, and EIRQ

Efficient consumes from 81.3s to 1502.7s when there is 1

common keyword. Therefore, EIRQ-Efficient is most

suitable to be deployed to a cloud environment. For

example, the time to transfer a query from the ADL to the

cloud consumes less than 100 seconds, and the time to

transfer the buffer from the cloud to the ADL consumes

less than 500 seconds, under 4 common keywords.

V. CONCLUSION

We propose three EIRQ schemes (EIRQ Simple, EIRQ

Privacy, and EIRQ Efficient) are worked through ADL. It

offers differential query services, which will also protect

the user privacy. These schemes are provide, clients are

recovered certain percentage of matched records by

particular queries of various ranks. Private searching

technique is used to cost efficient cloud environments. In

our EIRQ scheme assign ranks for each query, then

highest rank files are matched and user recovered certain

percentage of matched files. However, in the EIRQ

schemes, we simply determine the rank of each file by the

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 145819 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 919

highest rank of queries it matches. For our future work,

we will try to design a flexible ranking mechanism for the

EIRQ schemes.

REFERENCES:

[1] P. Mell and T. Grance, „„The NIST Definition of

Cloud Computing (Draft),‟‟ in NIST Special

Publication. Gaithersburg, MD, USA: National

Institute of Standards and Technology, 2011.

[2] R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky, „„Searchable Symmetric Encryption:

Improved Definitions and Efficient Constructions,‟‟ in

Proc. ACM CCS, 2006, pp. 79-88.

[3] R. Ostrovsky and W. Skeith, „„Private Searching

on Streaming Data,‟‟ in Proc. CRYPTO, 2005, pp. 233-

240.

[4] R. Ostrovsky and W. Skeith, „„Private Searching

on Streaming Data,‟‟ J. Cryptol., vol. 20, no. 4, pp. 397-

430, Oct. 2007.

[5] J. Bethencourt, D. Song, and B. Waters,

„„New Constructions and Practical Applications for

Private Stream Searching,‟‟ in Proc. IEEE SP, 2006, pp.

1-6.

[6] J. Bethencourt, D. Song, and B. Waters, „„New

Techniques for Private Stream Searching,‟‟ ACM Trans.

Inf. Syst. Security, vol. 12, no. 3, p. 16, Jan. 2009.

[7] Q. Liu, C. Tan, J. Wu, and G. Wang,

„„Cooperative Private Searching in Clouds,‟‟ J. Parallel

Distrib. Comput., vol. 72, no. 8, pp. 1019-1031, Aug.

2012.

[8] G. Danezis and C. Diaz, „„Improving the

Decoding Efficiency of Private Search,‟‟ Int‟l Assoc.

Cryptol. Res., IACR Eprint Archive No. 024, Schloss

Dagstuhl, Germany, 2006.

[9] G. Danezis and C. Diaz, „„Space-Efficient

Private Search with Applications to Rate less Codes,‟‟ in

Proc. Financial Cryptogr. Data Security, 2007, pp. 148-

162.

[10] M. Finiasz and K. Ramchandran, „„Private

Stream Search at the Same Communication Cost as a

Regular Search: Role of LDPC Codes,‟‟ in Proc. IEEE

ISIT, 2012, pp. 2556-2560.

[11] X. Yi and E. Bertino, „„Private Searching for

Single and Conjunctive Keywords on Streaming Data,‟‟

in Proc. ACM Workshop Privacy Electron. Soc., 2011,

pp. 153-158.

