
© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1258

Securing Coding-Based Cloud Storage against Pollution

Attacks

S Thajudheen Basha
1
, Dr. M. Sreedevi

2

1
Student, M.C.A, M.Phil., PhD, Dept. of Comp. Science, SVU College of CM & CS, S.V.University,

Tirupathi
2
Ass.Prof, Dept. of Comp. Science, SVU College of CM & CS, S.V.University, Tirupathi

Abstract- The widespread diffusion of distributed and

cloud storage solutions has changed dramatically the

way users, system designers, and service providers

manage their data. Outsourcing data on remote storage

provides indeed many advantages in terms of both

capital and operational costs. The security of data

outsourced to the cloud, however, still represents one of

the major concerns for all stakeholders. Pollution

attacks, whereby a set of malicious entities attempt to

corrupt stored data, are one of the many risks that

affect cloud data security.

In this paper we deal with pollution attacks in coding-

based block-level cloud storage systems, i.e. systems that

use linear codes to fragment, encode, and disperse

virtual disk sectors across a set of storage nodes to

achieve desired levels of redundancy, and to improve

reliability and availability without sacrificing

performance. Unfortunately, the effects of a pollution

attack on linear coding can be disastrous, since a single

polluted fragment can propagate pervasively in the

decoding phase, thus hampering the whole sector.

In this work we show that, using rate less codes, we can

design an early pollution detection algorithm able to

spot the presence of an attack while fetching the data

from cloud storage during the normal disk reading

operations. The alarm triggers a procedure that locates

the polluting nodes using the proposed detection

mechanism along with statistical inference. The

performance of the proposed solution is analyzed under

several aspects using both analytical modeling and

accurate simulation using real disk traces. Our results

show that the proposed approach is very robust and is

able to effectively isolate the polluters, even in harsh

conditions, provided that enough data redundancy is,

used.

Index Terms- Cloud storage, coding, security, integrity,

performance, pollution attack.

1. INTRODUCTION

Block-level cloud storage systems [1] provide the

sub-strate allowing users and applications to attach

their computing resources to remote, dynamically

provisioned storage resources, that appear, behave,

and can be used as local disks. Thanks to them, very

large data sets can be stored without having to incur

into potentially significant capital and operational

expenses. However, to unlock their full potential,

various problems need to be properly addressed,

including performance of data access, as well as data

availability and security.

Security of outsourced data to the cloud represents a

key concern for users, system designers, and ser-vice

providers. Among the many risks to data security,

pollution attacks represent one of the most dangerous

threats to data integrity, i.e., the ability of ensuring

data trustworthiness. In this kind of attack, malicious

entities take control of one or more storage resources

to corrupt (pollute) data (or parts of it) so as to hinder

data availability.

The negative impact of pollution attacks is further

am-plified when coding techniques are employed to

represent data outsourced on storage resources. In

this case, indi-vidual data items (each one stored

independently from each other) are first subdivided in

parts, that are then encoded to obtain a suitable

number of coded fragments to be placed on a set of

independent storage resources;

the set of coded fragments must be computed such

that a suitable subset of it allows the user to

reconstruct the original data item. In this case, a

couple of hard problems arise:

 in principle, any sequence of bits may be a valid

coded fragment, so there is no simple mean to

find out whether the data has been altered by a

malicious storage node until the corresponding

data item has been recovered by the user;

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1259

 even under the assumption that the above data

item has been recovered, and it has been

correctly detected as polluted, it is not trivial to

understand which coded fragment(s) among

those received by the user was polluted (and thus

to identify the malicious storage resource

responsible for that).

1.1 Our contribution

In this paper we propose a solution to both problems:

 we devise a pollution detection algorithm that

detects, with high probability if a set of untrusted

storage resources provides at least one polluted

coded frag-ment. The algorithm is based on a

modified version of the LT decoding algorithm

exploiting Gaussian Elimination; since an

analytical model for decoding (and detection)

performance is

 Exploits coding redundancy and efficient

decoding algorithms that require the solution of

systems of linear equations.

 We perform an extensive evaluation of our algo-

rithm using a combination of experimentation

with a C++ prototype, analytical modeling and

discrete-event simulations driven by real-word

disk access traces. In particular, we assess its

accuracy and time complexity, and we show that

identification of malicious storage resources is

possible with high probability and low running

time for a wide range of coding redundancies.

Moreover, we show that the average number of

sector reads required to identify all polluters is

very low and decreases as the coding redundancy

increases.

We use the architecture of ENIGMA (defined in [2])

as a blueprint for the model of a typical cloud storage

system based on LT codes, and we exploit some

results reported [2] to set the values of various system

parameters in the experimental evaluation. We would

like to point out that in [2] we limited ourselves to

quantify the ability of ENIGMA of merely tolerate

the presence of polluters in the system, i.e. its ability

of correctly reconstructing a sector assuming that a

subset of its fragments have been altered, but we did

not study the problem of detecting polluted sectors

and of identifying malicious storage nodes

responsible for that.

The paper is organized as follows. Sec. 2 discuss es

related works while in Sec. 3 we present the cloud

storage model on which our work is based. Then, we

continue with Sec. 4, where we discuss the attack

model we consider in our work, and illustrate the

pollution detection algorithm we devised. In Sec. 5

we move to the problem of identifying polluters, and

we present our identification algorithm. In Sec. 6 we

develop a mathe-matical model enabling us to study

the time required to identify all polluters in the cloud

storage system, that is validated agains t simulation

results in Sec. 7. In this latter section, we also study,

via experimentation and simulation, the accuracy vs.

speed trade-off of the proposed algorithm. Finally,

Sec. 8 concludes the paper, and outlines future

research work.

2.RELATED WORK

Several papers have dealt with the problem of

integrity check and repair of coding-based cloud

storage systems. Closer to the spirit of our work are

[3] and [4].

In [3] the authors consider random coding-based

cloud storage and devise both a pollution detection

algorithm and four identification and repair

algorithms to recover the original data. The

algorithms represent trade-offs between

computational and communication complexity and

successful identification (and repair) probability. This

work differs from ours in many ways:

 the work in [3] exploits coding in GF (q) with

very large q to assume one extra coded fragment

is enough to detect pollution, i.e., the pollution

 detection algorithm is assumed to be perfect.

Con-versely, we base our work on an imperfect

pollution detection algorithm (see Alg. 1, Sec. 4)

that stems from the use of LT codes based on

simple XOR combinations (q = 2), and of small

values of the coding block length k (that are

preferred in the context we consider for the sake

of performance and availability [2]). The

imperfection of the pol-lution detection

algorithms forced us to develop a more complex

approach with respect to [3] because we simply

cannot trust the (imperfect) detection mechanism

to draw conclusions on the status of the system

of equations. All algorithms in [3] would be

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1260

more complex if an imperfect pollution detection

mechanism had to be adopted;

 our pollution detection algorithm works

incremen-tally as soon as an additional coded

fragment is an-alyzed therefore it can detect

pollution even before works right after the

system of linear equations is solved. Alg. 1,

being a variation of GE decoding follows the

same principle of [3]. We provide the

implementation details in the specific case of LT

codes that, being suboptimal from the decoding

overhead point of view, lead to suboptimal

(imper-fect) pollution detection;

 the output of the two polluter identification

meth-ods are different. Algorithms in [3] are

invoked only if a random subset of cardinality k

+ 1 (out of n available equations) triggers the

pollution detection, and aim to repair the data

and to output a clean set of equations, from

which the original data can be recovered. This

means that only the polluted equa-tions in the

originally drawn subset are removed, while other

polluted equations in the remaining n − k − 1

ones are left there. Our algorithm, instead,

processes all the n equations at once and outputs

the set of all malicious storage nodes. This

involves a more complex organization of our

method (Alg. 2, Sec. 5) and represents a

significant difference with respect to algorithms

in [3] (we believe that algo-rithms in [3] could

well be adapted to output the entire set of

polluted equations although to the price of a

more complex structure;

 computational complexity of identification algo-

rithms is sensitive to n and k since they are all

based on trying all different subsets of equations

until a clean one is found. In [5] the same authors

devise a more efficient decoding algorithm that

sometimes has to resort to a complex subspace

search.

 besides characterizing the accuracy of our

method (estimation of probability pf) we

conduct a more comprehensive analysis to

evaluate the time re-quired for identifying all

polluters in the system.

In [4] rateless codes are exploited to devise a file

based cloud storage system that achieves high

availability and security; the paper mainly deals with

data integrity and data repair and focuses on exact

repair instead of a simpler functional repair of

polluted coded fragments. The authors propose to use

multiple LT encoding and decoding checks -

To avoid LT decoding failures; since the number of

required encoding and decoding checks is equal to

nk_, it follows that the data integrity check algorithm

may become rather complex as the values of n and k

increase. Nonetheless, only coding vectors are

involved in the proposed approach that turns to be a

one-time preprocess that can be reused on different

files.

Cryptographic or algebraic based approached to de-

sign on-the-fly verification techniques of the received

coded fragments is another line of research proposed

and discussed by several papers represent limitations

of these approaches.

Besides verification, error correction of corrupted

coded fragments is another important approach to

deal with pollution attacks in coding-based systems,

e.g., [15], [16], [17], [18]. All these methods are

based on the addition of coding information that

enable the coded fragment receivers to detect and

automatically recon-struct the original data. The price

to be paid is a re-markable increase in the coding

overhead; furthermore, the effectiveness of these

approaches heavily depends on the amount of

corrupted information.

3. SYSTEM MODEL

The architecture of the cloud s torage system we

consider in this paper builds upon the ENIGMA

distributed cloud storage infrastructure [2], that

allows the provision of Virtual Disks (VDs),

consisting of a set of consecutively-numerated

sectors, that can be used as if they were standard

physical disks. Its architecture features a set of NS

Storage Nodes (SNs), that store VD sectors after their

proper encoding by means of rateless codes, and a

Proxy where all the metadata allowing the retrieval

and decoding of VD sectors are kept.

More precisely, ENIGMA uses Luby Transform (LT)

rateless codes [19] to encode each sector, whereby

each sector S is first split into k fragments of equal

length S = (s1, . . . , sk), from which n coded

fragments F = (f1, . . . , fn) are created [2]; these

fragments are then placed on a subset AS of the NS

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1261

storage nodes. The parameter k is known as coding

block length, whereas n can be selected freely

allowing to reach the desired level of redundancy n/k.

After encoding, the n fragments of a given sector S

are stored in group of x on a random.

subset of the SNs. Thus, we have that every sector is

stored on |AS | = n/x different SNs.

In this paper we also assume that a subset of NP of

the NS storage nodes are malicious and may

intentionally corrupt the data they store (we call them

polluters), and we also assume that the coded

fragments of a given sector are stored by no more

than nP (out of the total NP) polluters.

To read a sector S, all the SNs storing fragments of

that sector are contacted by using the metadata stored

on the Proxy. Upon receiving this request, each SN

sends to the Proxy the x coded fragments of S it

stores. The Proxy then progressively decodes the

original sector S using the On-the-Fly Gaussian

Elimination (OFG) [20], [21] algorithm. Any set of k
′

≥ k coded fragments can be interpreted as a linear

system of equations that can be solved with Gaussian

Elimination to get the original k sector fragment

(provided that k independent equations are available).

The average number of fragments in excess ǫ = (k
′
 −

k) required for decoding is termed as coding

overhead.

The overall scenario is graphically shown in Fig. 1

that represents a sector S first broken into k parts S =

(s1, s2, . . . sk), and then placed on SNs in group of x

coded fragments (in the pictorial representation we

assume x = 2 for the sake of simplicity). The arrows

are used to represent the contribution of each sector

fragment to every coded fragments, and show that –

as consequence of the encoding technique described

in Sec. 4.1 – each coded fragment contributes to the

decod-ing of several original sector fragments. For

instance, the encoded fragments f2 and f4 can be used

to decode two and three distinct sector fragments,

respectively.

The dependency of several sector fragments from the

same encoded fragment implies that, in case of

pollution of the latter one, the decoding of all the

former ones is potentially compromised, thus

preventing the correct decoding of the corresponding

sector. To increase robust-ness to pollution we

impose a constraint on the place-ment of the coded

fragments. In particular, we guarantee that the coded

fragments referring to a given s i are stored by at least

nP +nr SNs, where nr > 0 can be tuned to obtain

increased resilience to polluters by decreasing the

probability that s i is controlled only by malicious.

SNs. Please note that nr is not a free parameter since

it must hold that nP +nr ≤ n/x; therefore, higher values

of nr can be imposed by increasing the coding

redundancy. It follows that the satisfaction of the

placement constraint implies that at least nP + nr

coded fragments including s i are available. Since

encoding is quite efficient in this work we implement

a simple rejection method where random placement

of the coded fragments is iterated until the above

constraint is fulfilled. Tab. 1 summarizes the notation

used throughout the rest of the paper. properties. In

particular, first a degree ρ is selected ac-cording to

the so called Robust Soliton Distribution, and then a

subset of ρ (out of k) sector fragments is randomly

picked up for XOR. The coding vector is generated

randomly and it is known only by the Proxy; from the

point of view of SNs the coded

4. ATTACK MODEL AND POLLUTION

DETEC- TION

In this section we model the pollution attack

considered in this work, that consists in the injection

of bogus coded fragments sent by malicious SNs in

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1262

response to read requests, and we show how the OFG

decoder (in charge of reconstructing the original

sectors starting from the set of corresponding coded

fragments) can be also used to carry out pollution

detection.

4.1Pollution Attack Model

The primary goal of polluters SNs is to make VD

sectors unrecoverable by preventing the decoding of

the original information while, at the same time,

hiding their identity so as to make it difficult to

recognize and remove them from the system. As

already said, they attempt to achieve their goal by

polluting in a certain fashion the coded fragment they

store.

To explain how these pollution attacks may be

carried out, we need to define how coded fragments

are gener-ated by the Proxy for given values on n, k,

and x.

To simplify notation, and without loss of generality,

in the following we assume that n is an integer

multiple of x. Every coded fragment is computed as a

XOR of a random set of sector fragments. More

precisely, the i-th coded fragment of a given sector

can be expressed
P
k as fi = j=1 gi,j s j where we use the summation to

represent the XOR operation, and g i,j = 1 or gi,j = 0 if

the j-th fragment is included in the XOR or not,

respectively.

The vector gi = (gi,1, . . . , gi,k) is known as the coding

vector, and it is drawn randomly according to the

pro-cedure shown in [19], that guarantees optimal

decoding sector availability since the same original

information can be retrieved from any random set of

more than k coded fragments (the actual number of

required frag-ments depends on the decoding

overhead ǫ). At a first glance, it could seem that the

use of coding can make the system very vulnerable to

pollution. Indeed, as shown in Fig. 1, it is possible

that a single polluted coded fragments propagates to

many original sector fragments s i. However, in this

work we show that coding fragments represent an

unintelligible partial and randomized XORed

segment of an unknown sector, thus guaranteeing

privacy.

With this in mind, we can now define the type of

pollution attacks we consider in this work. In

particular, we assume that a polluter SN can reply to

a read request by supplying a faked coded fragment f

p
, created by XOR-ing an original coded fragment f

with a random sequence r 6= 0 (where 0 denotes a

string of 0s), i.e. f
p
 = f + r. In other words, a polluter

transmits a fragment that is not in agreement with the

coding vector known by data owner. Altering the

coded fragment f to get f
p
 is a safe option for the

polluter, since any receiving client that has not yet

decoded the sector ignores the original information s j

and has no means to discriminate between polluted

and non polluted fragments.

4.2Pollution Detection

As shown in [2], rateless coding can be used to

increase brings also significant benefits in terms of

pollution detection, since it can be exploited to both

detect pollution and identify the SNs responsible of

the damage. To this end, we need to look in more

detail at the LT decoding process.

LT decoding can be cast as the solution of a linear

system of equations GS = F where G is a k ×k

decoding matrix carrying on the rows k linearly

independent coding vectors, F is the column vector of

the k coded fragments corresponding to such coding

vectors, and S is the vector of k unknown original

sector fragments. In the following, we denote as Gl

the l-th row of G and Fl the l-th element of vector F .

The OFG decoder [20] sequentially processes the in-

put, i.e., the pairs (fi, gi), that are being provided by

SNs, and executes Gaussian Elimination on the fly to

progressively fill up G starting from an empty matrix,

until G turns full rank, that corresponds to the

recovery of the original sector.

A modified version of the OFG decoder, that includes

the pollution detection mechanism we propose in this

paper is shown in Alg. 1 below by using pseudo-

code. The algorithm takes as input a set of coded

fragments Q, processes the coded fragments (f, g) ∈

Q, and returns two logic flags, namely decoded and

polluted, indicating whether decoding is successful or

not, and whether pollution is detected or not,

respectively. It is worth recalling that here the goal is

only to check whether the set Q includes or not

polluted fragments and not to spot which ones have

been actually modified.

OFG aims at selecting k linear independent equations

(or linear combinations thereof) to fill the matrix G

(initialized as an empty matrix). This is achieved by

iteratively considering the position l of the leftmost 1

of every g ∈ Q. If the l-th row of G is empty then g is

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1263

copied to Gl while f is copied to Fl (see lines 5-8 in

Alg. 1).

If, instead, Gl is already occupied, g is checked

against it. If g 6= Gl the algorithm performs a XOR

operation with Gl, i.e. g ← g + Gl; f ← f + Fl (lines

17-18 in Alg. 1) and the process is iterated on the

resulting pair (f, g). Conversely, if g = Gl (line 10 in

Alg. 1), the equation is recognized as a linear

combination of the current rows of G and in standard

OFG decoder is simply discarded. In this paper we

exploit this particular condition to perform pollution

detection.
P
k

To this end, we note that in this case g = j=1 αj Gj and

f can be computed according to the same combina-

Pk tion of elements of F , i.e. f = j=1 αj Fj .

From now on, let us assume we are processing a

polluted fragment f
p
 = f + r. First of all let us recall

that g corresponding to f
p
 is known only by the

decoder and cannot be modified by the attacker;

therefore, the OFG

Row insertion process will not be affected by

pollution. When processing the pair (f
p
, g) two

outcomes are pos-sible:

a) g is linearly independent on current G. In this

case any polluted fragment is stored in a given

row of G and F (lines 6-8 in Alg. 1);

b) g is linearly dependent on current G. In this case

Finally, we note that the second check can detect

pollu-tion also when processing a clean equation,

provided that at least a polluted one has already

contributed to G according to a). In this case, the

insertion of a clean equation g that is recognized as

dependent on G will indeed allow the decoder to

compute the check

volve some polluted row with rj 6= 0, that would

violate the system of equations, thus revealing the

presence of pollution.Previous analysis shows that

there is a chance to recognize pollution every time

a linearly dependent equation is considered. It must

be pointed out that the probability of such an event

increases with the number |Q| of processed

fragments. In fact, every new fragment progressively

fills G, thus increasing the probability that a

randomly encoded equation is redundant. This obser-

vation unveils that the more fragments the decoder

can process (e.g., when a higher coding redundancy

n/k is used), the more reliable the detection

mechanism will be. Moreover, it must be noted that

Alg. 1, being based on the observation of an

inconsistency in the system of lin-ear equations,

cannot generate false pollution detections; in other

words, our detector yields only false negatives and no

false positives. In the following we denote as pdet the

probability that Alg. 1 correctly detects pollution

when at least one polluted fragment belongs to Q.

5. POLLUTER IDENTIFICATION ALGORITHM

In this section we describe the algorithm we

developed to identify the polluters in the system. We

would like to stress that polluter identification is not

an easy task, since the linear coding approach

prevents the use of simple means to identify both

which fragments have been altered and the SNs

responsible for the damage.

In the following we consider a proxy that accesses a

sector S using the retrieval procedure described in

Sec. 3, and performs sector decoding by means of

Alg. 1. If a pollution is detected by this algorithm, the

Proxy triggers the polluters identification stage that

aims at identifying among the set AS of SNs storing

the n coded fragments of S – those SNs that have

replied to the read request with polluted fragments.

During the polluters identification stage, the Proxy

gathers all the n fragments corresponding to the

sector that is found to be polluted, and uses them as

input for the polluter identification algorithm; the

sector is held at the Proxy (i.e. it is not forwarded to

the requestor) to be clean are handled as usual, that is

once they have been recovered (using a suitable

subset of the corresponding n fragments), they are

passed to the users that requested them. It is worth

pointing out that normal operations and polluter

identification occur simultaneously.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1264

In the remainder of this section, we first describe the

polluter identification algorithm (Sec. 5.1), and then

we discuss several building blocks that it leverages

(Sec. 5.2) to carry out identification.

5.1Identification algorithm

The polluter identification algorithm, described by

Alg. 2, aims at computing the set of polluter SNs in

AS using an iterative approach. In each iteration, the

algorithm analyzes a random subset of AS , and

employs statistical inference to compute, for each

SN, the prob-ability of being a polluter. This

probability drives the incremental computation of

two sets, representing the polluters and the honest

SNs, respectively. After each iteration the set of SNs

yet to be analyzed shrinks until all SNs have been

classified as either being honest or polluters.

Our algorithm uses the sets of SN identifiers defined

below:

• U, containing the identifiers of all the SNs whose

state is still unknown;

• P, containing the identifiers of the SNs that have

been already classified as polluters;

• H, containing the identifiers of the SNs that have

been already classified as honest.

Moreover, we use the notation A ⊆R
d B to denote that

set A is a random subset of set B, with |A| = d.

Let us describe now the polluter identification

algorithm, problems. To this end it builds a working

set W ⊂ AS , of size w < n, by mixing h SNs

randomly selected from H and the remaining w − h

from U (lines 7-9). At startup (lines 2-3), H = ∅, so

all the SNs are taken from U = AS ; as the

identification proceeds, more and more (up to w − 1)

honest SNs will be added to W, thus easing the

inference on the state of the SNs taken from U (only

one in the most favorable case).

Then, the algorithm enters a loop (lines 4-22) in

which at each iteration – uses the Decode method

(Alg. 1) to check whether the decoding of the

fragments contributed only by nodes in W gives rise

to a polluted sector (line 10). If this is the case, then

at least one SN in W is a polluter. To identify these

nodes, we resort to a statistical inference technique,

known as Belief Propagation (BP), that has been

already applied to the problem of polluter

identification in the different scenario of coded peer-

to-peer streaming [22].

In this paper, we apply BP to estimate the two SNs in

W that are most likely to be polluter and honest (sets

F and L at line 11, respectively) by calling the BP

core procedure, that is presented in Alg. 5. If BP core

succeeds (lines 12-15), then the memberships of sets

H, P, U are updated and the for loop (lines 6 through

17) is exited. On the contrary, i.e. if either BP core

fails or if Decode does not detect pollution, then

another attempt is made on a new random working

set W up to a maximum number of trials (MaxBP).

When exiting the for loop (line 17) the sets H, P have

been possibly updated with the identification of a pair

of SNs (polluter, honest). If we are able to decode

from the set H∪U, i.e. all the SNs identified so far

plus all SNs still unknown, without detecting any

pollution (line 18), then we can reliably assume all

members of the union are honest; in such a case the

algorithm exits the outer while loop.

The steps of the algorithm are iterated through the

external while loop in order to progressively move

SNs from U to H or P until one of the following

conditions occur (while loop condition in line 4):

• there are no remaining SNs whose state is

unknown, i.e. identification has been completed;

• BP core failed all MaxBP trials to identify either

a polluter or an honest SN, i.e. the proposed

decision metric does not allow to discriminate

any further;

• the number of already identified polluters

exceeds the maximum limit nP .

The first case corresponds to a successful

termination, whereas in the latter two cases both H

and P are emptied to signal that the algorithm failed

to identify the polluters.

BP core, while being statistically solid, may fail iden-

tification when pdet < 1. Therefore, all the decisions

taken on F and L cannot be considered as completely

trustful. To avoid misclassifications, at the end of the

while loop (line 23), sets H and P are tested using the

Sanity checks method defined in Alg. 6. The main

identi-fication algorithm successfully terminates by

returning a non empty set P only if all sanity checks

on H and P are passed (line 30). On the contrary, an

additional attempt to compute P is performed up to a

maximum number MaxAttempts. The repeated trials

are useful since all attempts are driven by

randomness, e.g., in the choice of working sets W,

that can lead to different outcomes.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1265

To conclude, the identification algorithm can

terminate either with success or with failure to

compute the set of polluters P. Therefore, it is

characterized by the failure probability pf that

depends on all algorithm parameters that are

summarized in Tab. 2. It is worth pointing out that a

limited failure probability can be tolerated since

during the normal operations carried on by clients on

a VD several different sector reads can trigger the

pollution detection and, as a consequence, different

identification rounds are available. Therefore,

doubtful identification outputs can be skipped

waiting for a most favorable chance.

5.2Building blocks

As discussed in the previous subsection, to carry out

its operations Alg. 2 relies on two other procedures,

namely BP core and Sanity checks, whose detailed

descriptions follow.

5.2.1Belief Propagation core algorithm

Polluter identification can be cast as a statistical

inference problem as follows. The main idea is to

characterize each SNs i ∈ AS by an unknown

(hidden) binary state χi, where χi = 1 is used to

identify a polluter and χi = 0 is used to identify an

honest SN. The goal is then to infer

∀i ∈ AS , p(χi = 1).

The probability distributions of {χi} are inferred by

carrying out the following two phases:

1) first, we build a random instance of the so called

factor graph G = (A, C, E) (see Alg. 3). The

factor graph is a bipartite undirected graph where

the first set of vertices (A) represents SNs in AS ,

while the other one (C) represents checks. The i-

th check is represented by a pair of elements c i =

(i,Decode(Di).polluted) where:

 the first element (i) is a check identifier;

 the second element is a boolean check state that

is obtained by first computing a random subset

Di ⊆ A, and then by running the pollution

detection and decoding algorithm (Alg. 1) on it.

If the fragments in Di lead to a clean decoding,

then a negative check is created; conversely, if

pollution is detected, then a positive check is

created instead. We denote |Di| = d as the check

size. It is worth pointing out that it is necessary

to use BP with a decoding set D of size d < w to

have the chance to obtain negative checks, that

represent the hints on which the identification of

honest SNs is based. On the contrary, if we used

d = w, then all the checks provided to BP would

be positivethus making identification impossible.

The arcs of the factor graph G are created as

follows: for each check ci ∈ C the undirected arc

(a, ci) ∈ E if a ∈ Di, i.e. if the i-th check involves

SN a.

2) next, we apply the Belief propagation procedure

to the factor graph G (see Alg.4) to obtain an

estimate of the p(χi = 1) values given the current

instance of G. At startup we set p(χi = 1) = 0.5

for all vertices in A not yet identified as honest.

This value is meant to represent the maximum

uncertainty with respect to the hidden state of

SNs. On the contrary, all SN in H have their p(χ i

= 1) probabilities set to 0, i.e., honest SNs are

polluters with zero probability.

Subsequently, the BP algorithm is run on the factor

graph to obtain an estimate of the p(χ i = 1) val-ues.

The mathematical details and approximations

required to run BP along the bipartite graph of SNs

and checks can be found in [22]. Nonetheless,

Alg. 4 summarizes the key steps; intuitively, a neg-

ative check ci contributes to lower the probability of

SNs in Di to be malicious while a positive check

would increase it. To counteract the fact that the

checks are not fully reliable since pdet < 1, several

runs of the BP inference are used on different ran-

dom subsets Di and the estimated probabilities are

accumulated. As shown in Alg. 4 the BP inference

algorithm (referred to in the pseudo-code as an

external function named BP inference (G)) is used

BPt times, and the output estimates p(χi = 1) are

summed onto P (χi), that will represent the decision

metric used for identification. At the end of the cycle,

P (χi) is the average probability of being a polluter,

estimated on BPt different in- stances of G. It can be

noted that the computation of the P (χi) is based on

several checks and factor graph instances and

therefore the negative effect of the unreliable

pollution detection mechanism (that could

erroneously assign the check state) is attenuated

when the probability of false negatives in Alg. 1 is

low.

Alg. 5 describes the BP core method that exploits the

two previous algorithms to create our core decision

method based on the output of BP. This algorithm

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1266

shows how to threshold P (χi) to decide on the most

likely polluter and honest node, respectively. In

particular, SN f is inserted in set F (containing the top

suspect SN) only if P (χf) exceeds the threshold ηf .

A similar reasoning is carried out to assign an

element to set L that contains the identity of the SN

that is most likely to be honest (l).

The if statement at line 3 discriminates the behavior

of the algorithm depending on the number of SNs

whose state is still unknown: if such a number is

larger than k/x, we found that is convenient to use the

probability ranking to discriminate between the most

and least likely to be polluters and both f and l SNs

can be identified; otherwise only the SN f with the

largest P (χf) is identified (in this case the number of

SNs in ranking is limited and we do not assume the

least likely being a honest one). This sets will then be

used to progressively refine the identification of all

the malicious nodes forming the sets H and P that

have been defined previously.

5.2.2 Sanity checks

Since all phases of our method are based on an

unreliable pollution detection mechanism (as

discussed in Sec. 4.2, Alg. 1 may yield false

negatives with probability pdet), to avoid

misclassifications we also apply sanity checks

algorithms to the output of the identification phase,

i.e., sets H and P. To this end, Alg. 6 verifies the

following constraints:

• the SNs in H allow decoding of the sector

without pollution (line 2);

• the SNs in P are actual polluters (for loop in

lines 3-14). This check is performed by decoding

a working set Y, composed of one polluter from

P and all but one honest node from H to verify

that pollution actually occurs. This check is

carried on all possible elements in P and H. The

check fails as soon as a clean decoding is

detected.

• sector decoding does not depend on a single

equa-tion since in this case there is clearly no

way to verify whether such equation is polluted

or not. Of course, this check potentially classifies

as failed a correct identification attempt.

5.3 Failure probability vs. speed trade-off

Clearly, the failure probability p f of Alg. 2 depends

on all its parameters and a trade-off arises between

the algorithm speed and the p f values. In particular,

this trade-off is determined by the:

• robustness of the BP based inference that

increases as the overall number of checks in the

factor graphs we randomly generate increases.

Of course, the larger the factor graph the slower

Alg. 4. The size of the factor graphs is given by

BPt · BPw;

• thresholds ηf , ηl, and ηm in Alg. 5 determine the

accuracy required to identify one polluter and a

potential honest SN. Tight thresholds require to

generate a larger number of random factor

graphs before reliable identification (i.e., early

exiting the for loop in lines 6-17 of Alg. 2).

Parameter MaxBP represents an upper bound to

the number of such attempts.

• the maximum number of identification trials

(MaxAttempts). Indeed, identification is

repeatedly attempted to take advantage of

randomness both in the choice of working sets W

and in the creation of checks in the factor graphs.

Clearly, the larger MaxAttempts the higher the

probability to run a successful identification

attempt at the expense of increasing the

algorithm execution time.

6.MATHEMATICAL MODEL

In this section, we develop a mathematical model to

represent the average number of sector requests to

iden-tify all NP polluters among the NS storage nodes.

To this end, let us define a trace of disk sector reads

as a sequence {S(t)} where S(t) represents the t-th

disk sector request.

Every sector read triggers the decoding and detection

Alg. 1; in case pollution is detected, Alg. 2 is invoked

to attempt identification. We then observe that the NS

SNs of the cloud storage system are progressively

par-titioned into three disjoint subsets: identified

polluters, unidentified polluters, and honest.

We denote the number of identified polluters as 0 ≤

NI ≤ NP and the number of unidentified polluters as 0

≤ NU ≤ NP , with the constraint that NI + NU = NP . It

follows that the number of honest nodes is equal to

NS − NI − NU .

The allocation of the n fragments of a sector S to
n

x

SNs can be viewed as just as many draws without

replacement from all the SNs. In this case, it is well-

known that the probability a sector has been allocated

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1267

to nI identified polluter and to nU unidentified

polluters

7. EXPERIMENTAL RESULTS

references, and simulates the dynamics of the system

(sector store and retrieval, sector pollution, etc.), as

well as of the polluters identification algorithm.

We consider two scenarios with increasing values of

coding redundancy, namely n = 2k and n = 3k. Fur-

thermore, we let the MaxAttempts parameter vary in

the set {10, 25, 50, 100}. Overall, this results in 8

distinct operational scenarios.

The simulator is used to estimate both nclean and tclean;

their values clearly depend on the status of each one

of the sectors in the trace (i.e., either “clean” or

“polluted”).

In our experiments, we use as workload a set of real-

world disk traces [23], that represent disk access

patterns of various types, generated by applications

and services of different kinds. More specifically, we

consider the following Block I/O traces belonging to

the Microsoft Production Server Traces: Display Ads

Data Server (DADS), Display Ads Payload (DAPAY) ,

MSN Storage CFS (CFS) , Radius Authentication

(RADAUT), and Radius Back End SQL Server

(RADBE).

In all the experiments, we consider a system config-

uration encompassing NS = 128 SNs, and we model

network latencies as discussed in [2], that is, by using

the latency values measured in the Internet Delay

Space Synthesizer [24].

Given that the sequence of sectors requested in each

trace is fixed, but that polluter nodes can be placed

anywhere in the system, for each scenario we run

several experiments in which we vary the placement

of polluter nodes by placing them at random of the

set of SNs, and we compute average values for n clean

and tclean (for each average, we compute the 95%

confidence interval with a ±2.5% relative error).

7.3.2 Mathematical model validation

To validate the model we developed in Sec. 6, we

com-pare the values of nclean computed by means of

Eq. 3 against those obtained via simulation.

We start by assessing whether the performance of the

identification algorithm are affected by the specific

trace used as workload. To this end, we perform

simulation experiments in which – for each scenario

we use as workload one of the traces mentioned

above, and we compute the corresponding value of

nclean.

The results corresponding to the n = 2k and n = 3k

scenarios for MaxAttempts = 100 are shown in Fig.

5, where nclean is plotted as a function of the total

number of polluters in the system NP (error vertical

bars are very tight and are not shown to improve

readability).

As can be seen from this figure, nclean does not

depend on the specific trace. Similar results have

been obtained for the other values of MaxAttempts

we consider, that are thus not reported here for the

sake of space. This, in turn, means that any one of the

five traces we consider is a good representative of all

the other ones, as far as the behavior of the detection

algorithm is concerned.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1268

Fig. 6. Comparison of the nclean values for the DADS

trace computed by the model and by the s imulator for

n = 2k and n = 3k. Vertical bars centered on data

points represent confidence intervals using anyone of

these traces that, in this particular case, we chose to

be DADS.

The values for nclean computed by means of Eq. 3, as

well as those computed by the simulator for the

above trace are shown in Fig. 6 for n = 2k and n = 3k.

As can be seen from Fig. 6, the values of n clean

computed by the simulator are practically identical to

those computed by Eq. 3, thus confirming the

accuracy of results produced by the model.

7.3.3 Performance analysis

Let us now discuss the results concerning nclean and

tclean, starting with the former ones. The independence

of these results from the specific trace allows us to

report only those corresponding to the DADS trace.

In Fig. 7 we show the nclean values obtained from Eq.

3 for different values n of code redundancy. From

this figure, we can note that redundancy has a

beneficial impact on system resilience. Indeed, n = 3k

redundancy allows a dramatic reduction of the

average number of sector accesses before getting rid

of polluters w.r.t. the baseline n = 2k. Further

increments of redundancy yield negligible benefits

(as witnessed by the inset in Fig. 7) although

redundancy n = 5k allows the system to be cleaned

when half of the SNs are malicious in just about 43

sector accesses on average.

Let us now turn to tclean that, as already mentioned,

depends both on the characteristics of the system and

of the specific trace used as workload, and on the

time taken by each execution of the detection

algorithm, that in turn depends on the value of

MaxAttempts. To study the impact of this parameter

on tclean, we perform a set of experiments in which,

for each scenario and trace, we use different value of

MaxAttempts chosen in the set{10, 25, 50, 100}.

The results of the experiments corresponding to the

DADS trace are shown in Fig. 8 (those corresponding

to the other traces do not differ significantly, so they

are not reported here to save space).

As can be seen from these results, tclean is not affected

by the value of MaxAttempts for lower values of the

number of polluter nodes (10 for n = 2k and 15 for n

= 3k), but for larger number of polluter nodes in the

system differences appear. In particular, we note that

the lower the values of MaxAttempts, the higher tclean.

This is due to the fact that when the number m of

polluters in a single sector approaches the maximum

number of polluters that can be handled by our

algorithm (nP), the failure probability steeply

increases; furthermore, the lower the value of

MaxAttempts, the higher the failure probability and,

consequently, the larger the number of polluted

sectors that must be processed in order to clean the

system (and, consequently, the time that elapses

before the system is cleaned). This effect becomes

larger and larger as the number NP of polluter nodes

in the system increases, since the larger NP , the

higher the probability that a polluted sector has been

polluted by a number of polluters equal to or larger

than the maximum number of polluters that can be

tolerated by the algorithm (nP).

8.CONCLUSIONS

In this paper we have shown that rateless codes allow

one to design a simple pollution detection mechanism

that can be used to check data integrity during the

normal read operations of a cloud-based storage sys-

tem. Nonetheless, the detection mechanism alone is

not enough to solve the most important issue, i.e. to

locate the malicious storage nodes in order to remove

them from the system. Here we have proposed an

algorithmic solution that exploits both pollution

detection, enabled by rateless codes, and statistical

inference to iteratively identify the malicious nodes.

We have provided an an-alytical model to estimate

the time required to identify all polluters in a

complete cloud storage system; we also analyzed the

effectiveness of our approach as a function of several

system parameters. Finally, we have simulated an end

to end distributed cloud storage scenario and, by

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1269

taking real disk traces into account, we have shown

that the proposed technique achieves the desired level

of robustness to polluters during realistic disk usage.

Future works include the study of other rateless code

families, e.g. band codes proposed in [25], in order to

investigate possible improvements both in terms of

identification performance and computational cost –

REFERENCES

[1] H. Dewan and R. Hansdah, “A survey of cloud

storage facilities,” in IEEE SERVICES, jul 2011,

pp. 224 –231.

[2] C. Anglano, R. Gaeta, and M. Grangetto,

“Exploiting rateless codes in cloud storage

systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 5, pp. 1313–

1322, May 2015.

[3] L. Buttyan, L. Czap, and I. Vajda, “Detection

and recovery from pollution attacks in coding-

based distributed storage schemes,”

[4] Cao, S. Yu, Z. Yang, W. Lou, and Y. Hou, “LT

codes-based secure and reliable cloud storage

service,” in IEEE INFOCOM, 2012, pp. 693–

701.

[5] L. Buttyn, L. Czap, and I. Vajda, “Pollution

attack defense for coding based sensor storage,”

in Proceedings of the IEEE Interna-tional

Conference on Sensor Networks, Ubiquitous,

and Trustworthy Computing (SUTC), 2010.

[6] M. N. Krohn, M. J. Freedman, and D. Mazieres,

“On-the-fly verifi-cation of rateless erasure

codes for efficient content distribution,” Security

and Privacy, IEEE Symposium on, 2004.

[7] C. Gkantsidis and P. Rodriguez, “Cooperative

security for net-work coding file distribution,” in

IEEE INFOCOM, 2006.

[8] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An

efficient signature-based scheme for securing

network coding against pollution attacks,” in

INFOCOM 2008. The 27th Conference on

Computer Communications. IEEE, 2008.

[9] E. Kehdi and B. Li, “Null keys: Limiting

malicious attacks via null space properties of

network coding,” in INFOCOM 2009, IEEE.

[10] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An

efficient scheme for securing xor network coding

against pollution attacks,” in INFOCOM 2009,

IEEE.

[11] X. Wu, Y. Xu, C. Yuen, and L. Xiang, “A tag

encoding scheme against pollution attack to

linear network coding,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 25, no. 1,

pp. 33–42, 2014.

[12] F. Chen, T. Xiang, Y. Yang, and S. Chow,

“Secure cloud storage meets with secure network

coding,” in INFOCOM, 2014 Proceed-ings

IEEE, pp. 673–681.

[13] A. Le and A. Markopoulou, “Nc-audit: Auditing

for network coding storage,” in Network Coding

(NetCod), 2012 International Symposium on, pp.

155–160.

[14] S. T. Shen, H. Y. Lin, and W. G. Tzeng, “An

effective integrity check scheme for secure

erasure code-based storage systems,”

[15] N. IEEE Transactions on Reliability, vol. 64, no.

3, pp. 840–851, 2015.

[16] T. Ho, B. Leong, R. Koetter, M. Medard, M.

Effros, and D. Karger, “Byzantine modification

detection in multicast networks with random

network coding,” Information Theory, IEEE

Transactions on, vol. 54, no. 6, pp. 2798 –2803,

june 2008.

[17] S. Jaggi, M. Langberg, S. Katti, T. Ho, D.

Katabi, M. Medard, and M. Effros, “Resilient

network coding in the presence of byzantine

adversaries,” Information Theory, IEEE

Transactions on, vol. 54, no. 6, pp. 2596 –2603,

june 2008.

[18] R. Koetter and F. Kschischang, “Coding for

errors and erasures in

[19] random network coding,” Information Theory,

IEEE Transactions on, vol. 54, no. 8, pp. 3579 –

3591, august 2008.

[20] B. Chen, R. Curtmola, G. Ateniese, and R.

Burns, “Remote data checking for network

coding-based distributed storage systems,” in

Proceedings of the 2010 ACM Workshop on

Cloud Computing Security Workshop, CCSW

’10, pp. 31–42

[21] R. Gaeta and M. Grangetto, “Identification of

malicious nodes in peer-to-peer streaming: A

belief propagation based technique,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 24, no. 10, pp. 1994–2003, 2013.

[22] “SNIA - Storage Networking Industry

Association: IOTTA Repository Homes.”

[Online]. Available: http://iotta.snia.org/.

© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1270

[23] B. Zhang, T. S. E. Ng, A. Nandi, R. H. Riedi, P.

Druschel, and G. Wang, “Measurement-

based analysis, modeling, and synthesis of the

Internet delay space,” IEEE/ACM Trans. on

[24] A. Fiandrotti, V. Bioglio, M. Grangetto, R.

Gaeta, and E. Magli, “Band codes for energy-

efficient network coding with application to p2p

mobile streaming,” IEEE Transactions on

Multimedia, vol. 16, no. 2, pp. 521–532, 2014

[25] M. Luby, “LT codes,” in IEEE

[26] FOCS, Nov. 2002, pp. 271–280.

[27] V. Bioglio, R. Gaeta, M. Grangetto, and M.

Sereno, “On the fly gaussian elimination for lt

codes,” IEEE Communication Letters, vol. 13,

pp. 953–955, 2009.

[28] V. Bioglio, M. Grangetto, R. Gaeta, and M.

Sereno, “An optimal partial decoding algorithm

for rateless codes,” in IEEE ISIT, 2011, pp.

2731–2735.

