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Abstract- The widespread diffusion of distributed and 

cloud storage solutions has changed dramatically the 

way users, system designers, and service providers 

manage their data. Outsourcing data on remote storage 

provides indeed many advantages in terms of both 

capital and operational costs. The security of data 

outsourced to the cloud, however, still represents one of 

the major concerns for all stakeholders. Pollution 

attacks, whereby a set of malicious entities attempt to 

corrupt stored data, are one of the many risks that 

affect cloud data security. 

In this paper we deal with pollution attacks in coding-

based block-level cloud storage systems, i.e. systems that 

use linear codes to fragment, encode, and disperse 

virtual disk sectors across a set of storage nodes to 

achieve desired levels of redundancy, and to improve 

reliability and availability without sacrificing 

performance. Unfortunately, the effects of a pollution 

attack on linear coding can be disastrous, since a single 

polluted fragment can propagate pervasively in the 

decoding phase, thus hampering the whole sector. 

In this work we show that, using rate less codes, we can 

design an early pollution detection algorithm able to 

spot the presence of an attack while fetching the data 

from cloud storage during the normal disk reading 

operations. The alarm triggers a procedure that locates 

the polluting nodes using the proposed detection 

mechanism along with statistical inference. The 

performance of the proposed solution is analyzed under 

several aspects using both analytical modeling and 

accurate simulation using real disk traces. Our results 

show that the proposed approach is very robust and is 

able to effectively isolate the polluters, even in harsh 

conditions, provided that enough data redundancy is, 

used. 

 

Index Terms- Cloud storage, coding, security, integrity, 

performance, pollution attack. 

 

1. INTRODUCTION 

 

Block-level cloud storage systems [1] provide the 

sub-strate allowing users and applications to attach 

their computing resources to remote, dynamically 

provisioned storage resources, that appear, behave, 

and can be used as local disks. Thanks to them, very 

large data sets can be stored without having to incur 

into potentially significant capital and operational 

expenses. However, to unlock their full potential, 

various problems need to be properly addressed, 

including performance of data access, as well as data 

availability and security. 

Security of outsourced data to the cloud represents a 

key concern for users, system designers, and ser-vice 

providers. Among the many risks to data security, 

pollution attacks represent one of the most dangerous 

threats to data integrity, i.e., the ability of ensuring 

data trustworthiness. In this kind of attack, malicious 

entities take control of one or more storage resources 

to corrupt (pollute) data (or parts of it) so as to hinder 

data availability. 

The negative impact of pollution attacks is further 

am-plified when coding techniques are employed to 

represent data outsourced on storage resources. In 

this case, indi-vidual data items (each one stored 

independently from each other) are first subdivided in 

parts, that are then encoded to obtain a suitable 

number of coded fragments to be placed on a set of 

independent storage resources;  

the set of coded fragments must be computed such    

that a suitable subset of it allows the user to 

reconstruct the original data item. In this case, a 

couple of hard problems arise: 

 in principle, any sequence of bits may be a valid 

coded fragment, so there is no simple mean to 

find out whether the data has been altered by a 

malicious storage node until the corresponding 

data item has been recovered by the user;  



© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002 

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  1259 

 

 even under the assumption that the above data 

item has been recovered, and it has been 

correctly detected as polluted, it is not trivial to 

understand which coded fragment(s) among 

those received by the user was polluted (and thus 

to identify the malicious storage resource 

responsible for that).  

 

1.1 Our contribution  

In this paper we propose a solution to both problems: 

 we devise a pollution detection algorithm that 

detects, with high probability if a set of untrusted 

storage resources provides at least one polluted 

coded frag-ment. The algorithm is based on a 

modified version of the LT decoding algorithm 

exploiting Gaussian Elimination; since an 

analytical model for decoding (and detection) 

performance is   

 Exploits coding redundancy and efficient 

decoding algorithms that require the solution of 

systems of linear equations.  

 We perform an extensive evaluation of our algo-

rithm using a combination of experimentation 

with a C++ prototype, analytical modeling and 

discrete-event simulations driven by real-word 

disk access traces. In particular, we assess its 

accuracy and time complexity, and we show that 

identification of malicious storage resources is 

possible with high probability and low running 

time for a wide range of coding redundancies. 

Moreover, we show that the average number of 

sector reads required to identify all polluters is 

very low and decreases as the coding redundancy 

increases.  

We use the architecture of ENIGMA (defined in [2]) 

as a blueprint for the model of a typical cloud storage 

system based on LT codes, and we exploit some 

results reported [2] to set the values of various system 

parameters in the experimental evaluation. We would 

like to point out that in [2] we limited ourselves to 

quantify the ability of ENIGMA of merely tolerate 

the presence of polluters in the system, i.e. its ability 

of correctly reconstructing a sector assuming that a 

subset of its fragments have been altered, but we did 

not study the problem of detecting polluted sectors 

and of identifying malicious storage nodes 

responsible for that. 

The paper is organized as follows. Sec. 2 discuss es 

related works while in Sec. 3 we present the cloud 

storage model on which our work is based. Then, we 

continue with Sec. 4, where we discuss the attack 

model we consider in our work, and illustrate the 

pollution detection algorithm we devised. In Sec. 5 

we move to the problem of identifying polluters, and 

we present our identification algorithm. In Sec. 6 we 

develop a mathe-matical model enabling us to study 

the time required to identify all polluters in the cloud 

storage system, that is validated agains t simulation 

results in Sec. 7. In this latter section, we also study, 

via experimentation and simulation, the accuracy vs. 

speed trade-off of the proposed algorithm. Finally, 

Sec. 8 concludes the paper, and outlines future 

research work. 

 

2.RELATED WORK 

 

Several papers have dealt with the problem of 

integrity check and repair of coding-based cloud 

storage systems. Closer to the spirit of our work are 

[3] and [4]. 

In [3] the authors consider random coding-based 

cloud storage and devise both a pollution detection 

algorithm and four identification and repair 

algorithms to recover the original data. The 

algorithms represent trade-offs between 

computational and communication complexity and 

successful identification (and repair) probability. This 

work differs from ours in many ways: 

 the work in [3] exploits coding in GF (q) with 

very large q to assume one extra coded fragment 

is enough to detect pollution, i.e., the pollution  

 detection algorithm is assumed to be perfect. 

Con-versely, we base our work on an imperfect 

pollution detection algorithm (see Alg. 1, Sec. 4) 

that stems from the use of LT codes based on 

simple XOR combinations (q = 2), and of small 

values of the coding block length k (that are 

preferred in the context we consider for the sake 

of performance and availability [2]). The 

imperfection of the pol-lution detection 

algorithms forced us to develop a more complex 

approach with respect to [3] because we simply 

cannot trust the (imperfect) detection mechanism 

to draw conclusions on the status of the system 

of equations. All algorithms in [3] would be 
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more complex if an imperfect pollution detection 

mechanism had to be adopted;  

 our pollution detection algorithm works 

incremen-tally as soon as an additional coded 

fragment is an-alyzed therefore it can detect 

pollution even before works right after the 

system of linear equations is solved. Alg. 1, 

being a variation of GE decoding follows the 

same principle of [3]. We provide the 

implementation details in the specific case of LT 

codes that, being suboptimal from the decoding 

overhead point of view, lead to suboptimal 

(imper-fect) pollution detection;  

 the output of the two polluter identification 

meth-ods are different. Algorithms in [3] are 

invoked only if a random subset of cardinality k 

+ 1 (out of n available equations) triggers the 

pollution detection, and aim to repair the data 

and to output a clean set of equations, from 

which the original data can be recovered. This 

means that only the polluted equa-tions in the 

originally drawn subset are removed, while other 

polluted equations in the remaining n − k − 1 

ones are left there. Our algorithm, instead, 

processes all the n equations at once and outputs 

the set of all malicious storage nodes. This 

involves a more complex organization of our 

method (Alg. 2, Sec. 5) and represents a 

significant difference with respect to algorithms 

in [3] (we believe that algo-rithms in [3] could 

well be adapted to output the entire set of 

polluted equations although to the price of a 

more complex structure; 

 computational complexity of identification algo-

rithms is sensitive to n and k since they are all 

based on trying all different subsets of equations 

until a clean one is found. In [5] the same authors 

devise a more efficient decoding algorithm that 

sometimes has to resort to a complex subspace 

search. 

 besides characterizing the accuracy of our 

method (estimation of probability pf ) we 

conduct a more comprehensive analysis to 

evaluate the time re-quired for identifying all 

polluters in the system.  

  

In [4] rateless codes are exploited to devise a file 

based cloud storage system that achieves high 

availability and security; the paper mainly deals with 

data integrity and data repair and focuses on exact 

repair instead of a simpler functional repair of 

polluted coded fragments. The authors propose to use 

multiple LT encoding and decoding checks -  

To avoid LT decoding failures; since the number of 

required encoding and decoding checks is equal to 

nk_, it follows that the data integrity check algorithm 

may become rather complex as the values of n and k 

increase. Nonetheless, only coding vectors are 

involved in the proposed approach that turns to be a 

one-time preprocess that can be reused on different 

files. 

Cryptographic or algebraic based approached to de-

sign on-the-fly verification techniques of the received 

coded fragments is another line of research proposed 

and discussed by several papers represent limitations 

of these approaches. 

Besides verification, error correction of corrupted 

coded fragments is another important approach to 

deal with pollution attacks in coding-based systems, 

e.g., [15], [16], [17], [18]. All these methods are 

based on the addition of coding information that 

enable the coded fragment receivers to detect and 

automatically recon-struct the original data. The price 

to be paid is a re-markable increase in the coding 

overhead; furthermore, the effectiveness of these 

approaches heavily depends on the amount of 

corrupted information. 

 

3. SYSTEM MODEL 

 

The architecture of the cloud s torage system we 

consider in this paper builds upon the ENIGMA 

distributed cloud storage infrastructure [2], that 

allows the provision of Virtual Disks (VDs), 

consisting of a set of consecutively-numerated 

sectors, that can be used as if they were standard 

physical disks. Its architecture features a set of NS 

Storage Nodes (SNs), that store VD sectors after their 

proper encoding by means of rateless codes, and a 

Proxy where all the metadata allowing the retrieval 

and decoding of VD sectors are kept. 

More precisely, ENIGMA uses Luby Transform (LT) 

rateless codes [19] to encode each sector, whereby 

each sector S is first split into k fragments of equal 

length S = (s1, . . . , sk), from which n coded 

fragments F = (f1, . . . , fn) are created [2]; these 

fragments are then placed on a subset AS of the NS 
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storage nodes. The parameter k is known as coding 

block length, whereas n can be selected freely 

allowing to reach the desired level of redundancy n/k. 

After encoding, the n fragments of a given sector S 

are stored in group of x on a random. 

 
subset of the SNs. Thus, we have that every sector is 

stored on |AS | = n/x different SNs. 

In this paper we also assume that a subset of NP  of 

the NS storage nodes are malicious and may 

intentionally corrupt the data they store (we call them 

polluters), and we also assume that the coded 

fragments of a given sector are stored by no more 

than nP  (out of the total NP  ) polluters. 

To read a sector S, all the SNs storing fragments of 

that sector are contacted by using the metadata stored 

on the Proxy. Upon receiving this request, each SN 

sends to the Proxy the x coded fragments of S it 

stores. The Proxy then progressively decodes the 

original sector S using the On-the-Fly Gaussian 

Elimination (OFG) [20], [21] algorithm. Any set of k
′
 

≥ k coded fragments can be interpreted as a linear 

system of equations that can be solved with Gaussian 

Elimination to get the original k sector fragment 

(provided that k independent equations are available). 

The average number of fragments in excess  ǫ = (k
′
 − 

k) required for decoding is termed as coding 

overhead. 

The overall scenario is graphically shown in Fig. 1 

that represents a sector S first broken into k parts S = 

(s1, s2, . . . sk), and then placed on SNs in group of x 

coded fragments (in the pictorial representation we 

assume x = 2 for the sake of simplicity). The arrows 

are used to represent the contribution of each sector 

fragment to every coded fragments, and show that – 

as consequence of the encoding technique described 

in Sec. 4.1 – each coded fragment contributes to the 

decod-ing of several original sector fragments. For 

instance, the encoded fragments f2 and f4 can be used 

to decode two and three distinct sector fragments, 

respectively. 

The dependency of several sector fragments from the 

same encoded fragment implies that, in case of 

pollution of the latter one, the decoding of all the 

former ones is potentially compromised, thus 

preventing the correct decoding of the corresponding 

sector. To increase robust-ness to pollution we 

impose a constraint on the place-ment of the coded 

fragments. In particular, we guarantee that the coded 

fragments referring to a given s i are stored by at least 

nP  +nr SNs, where nr > 0 can be tuned to obtain 

increased resilience to polluters by decreasing the 

probability that s i is controlled only by malicious. 

 
SNs. Please note that nr is not a free parameter since 

it must hold that nP  +nr ≤ n/x; therefore, higher values 

of nr can be imposed by increasing the coding 

redundancy. It follows that the satisfaction of the 

placement constraint implies that at least nP  + nr 

coded fragments including s i are available. Since 

encoding is quite efficient in this work we implement 

a simple rejection method where random placement 

of the coded fragments is iterated until the above 

constraint is fulfilled. Tab. 1 summarizes the notation 

used throughout the rest of the paper. properties. In 

particular, first a degree ρ is selected ac-cording to 

the so called Robust Soliton Distribution, and then a 

subset of ρ (out of k) sector fragments is randomly 

picked up for XOR. The coding vector is generated 

randomly and it is known only by the Proxy; from the 

point of view of SNs the coded  

 

4. ATTACK   MODEL   AND   POLLUTION   

DETEC- TION 

 

In this section we model the pollution attack 

considered in this work, that consists in the injection 

of bogus coded fragments sent by malicious SNs in 
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response to read requests, and we show how the OFG 

decoder (in charge of reconstructing the original 

sectors starting from the set of corresponding coded 

fragments) can be also used to carry out pollution 

detection. 

 

4.1Pollution Attack Model 

The primary goal of polluters SNs is to make VD 

sectors unrecoverable by preventing the decoding of 

the original information while, at the same time, 

hiding their identity so as to make it difficult to 

recognize and remove them from the system. As 

already said, they attempt to achieve their goal by 

polluting in a certain fashion the coded fragment they 

store. 

To explain how these pollution attacks may be 

carried out, we need to define how coded fragments 

are gener-ated by the Proxy for given values on n, k, 

and x. 

To simplify notation, and without loss of generality, 

in the following we assume that n is an integer 

multiple of x. Every coded fragment is computed as a 

XOR of a random set of sector fragments. More 

precisely, the i-th coded fragment of a given sector 

can be expressed 
P
k as fi = j=1 gi,j s j where we use the summation to 

represent the XOR operation, and g i,j = 1 or gi,j = 0 if 

the j-th fragment is included in the XOR or not, 

respectively. 

The vector gi = (gi,1, . . . , gi,k) is known as the coding 

vector, and it is drawn randomly according to the 

pro-cedure shown in [19], that guarantees optimal 

decoding sector availability since the same original 

information can be retrieved from any random set of 

more than k coded fragments (the actual number of 

required frag-ments depends on the decoding 

overhead ǫ). At a first glance, it could seem that the 

use of coding can make the system very vulnerable to 

pollution. Indeed, as shown in Fig. 1, it is possible 

that a single polluted coded fragments propagates to 

many original sector fragments s i. However, in this 

work we show that coding fragments represent an 

unintelligible partial and randomized XORed 

segment of an unknown sector, thus guaranteeing 

privacy. 

With this in mind, we can now define the type of 

pollution attacks we consider in this work. In 

particular, we assume that a polluter SN can reply to 

a read request by supplying a faked coded fragment f 

p
, created by XOR-ing an original coded fragment f 

with a random sequence r 6= 0 (where 0 denotes a 

string of 0s), i.e. f 
p
 = f + r. In other words, a polluter 

transmits a fragment that is not in agreement with the 

coding vector known by data owner. Altering the 

coded fragment f to get f 
p
 is a safe option for the 

polluter, since any receiving client that has not yet 

decoded the sector ignores the original information s j 

and has no means to discriminate between polluted 

and non polluted fragments. 

 

4.2Pollution Detection  

As shown in [2], rateless coding can be used to 

increase brings also significant benefits in terms of 

pollution detection, since it can be exploited to both 

detect pollution and identify the SNs responsible of 

the damage. To this end, we need to look in more 

detail at the LT decoding process. 

LT decoding can be cast as the solution of a linear 

system of equations GS = F where G is a k ×k 

decoding matrix carrying on the rows k linearly 

independent coding vectors, F is the column vector of 

the k coded fragments corresponding to such coding 

vectors, and S is the vector of k unknown original 

sector fragments. In the following, we denote as  Gl 

the l-th row of G and Fl the l-th element of vector F . 

The OFG decoder [20] sequentially processes the in-

put, i.e., the pairs (fi, gi), that are being provided by 

SNs, and executes Gaussian Elimination on the fly to 

progressively fill up G starting from an empty matrix, 

until G turns full rank, that corresponds to the 

recovery of the original sector. 

A modified version of the OFG decoder, that includes 

the pollution detection mechanism we propose in this 

paper is shown in Alg. 1 below by using pseudo-

code. The algorithm takes as input a set of coded 

fragments Q, processes the coded fragments (f, g) ∈ 

Q, and returns two logic flags, namely decoded and 

polluted, indicating whether decoding is successful or 

not, and whether pollution is detected or not, 

respectively. It is worth recalling that here the goal is 

only to check whether the set Q includes or not 

polluted fragments and not to spot which ones have 

been actually modified. 

OFG aims at selecting k linear independent equations 

(or linear combinations thereof) to fill the matrix G 

(initialized as an empty matrix). This is achieved by 

iteratively considering the position l of the leftmost 1 

of every g ∈ Q. If the l-th row of G is empty then g is 



© April 2018 | IJIRT | Volume 4 Issue 11 | ISSN: 2349-6002 

IJIRT 146014 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  1263 

 

copied to Gl while f is copied to Fl (see lines 5-8 in 

Alg. 1). 

If, instead, Gl is already occupied, g is checked 

against it. If g 6= Gl the algorithm performs a XOR 

operation with Gl, i.e. g ← g + Gl; f ← f + Fl (lines 

17-18 in Alg. 1) and the process is iterated on the 

resulting pair (f, g). Conversely, if g = Gl (line 10 in 

Alg. 1), the equation is recognized as a linear 

combination of the current rows of G and in standard 

OFG decoder is simply discarded. In this paper we 

exploit this particular condition to perform pollution 

detection. 
P
k 

To this end, we note that in this case g = j=1 αj Gj and 

f can be computed according to the same combina- 

Pk tion of elements of F , i.e. f = j=1 αj Fj . 

From now on, let us assume we are processing a 

polluted fragment f 
p
 = f + r. First of all let us recall 

that g corresponding to f 
p
 is known only by the 

decoder and cannot be modified by the attacker; 

therefore, the OFG 

Row insertion process will not be affected by 

pollution. When processing the pair (f 
p
, g) two 

outcomes are pos-sible: 

a) g is linearly independent on current G. In this 

case any polluted fragment is stored in a given 

row of G and F (lines 6-8 in Alg. 1);  

b) g is linearly dependent on current G. In this case  

Finally, we note that the second check can detect 

pollu-tion also when processing a clean equation, 

provided that at least a polluted one has already 

contributed to G according to a). In this case, the 

insertion of a clean equation g that is recognized as 

dependent on G will indeed allow the decoder to 

compute the check 

 
volve some polluted row with rj 6= 0, that would 

violate the system of equations, thus revealing the 

presence of pollution.Previous  analysis  shows  that  

there  is  a  chance  to recognize pollution every time 

a linearly dependent equation is considered. It must 

be pointed out that the probability of such an event 

increases with the number |Q| of processed 

fragments. In fact, every new fragment progressively 

fills G, thus increasing the probability that a 

randomly encoded equation is redundant. This obser-

vation unveils that the more fragments the decoder 

can process (e.g., when a higher coding redundancy 

n/k is used), the more reliable the detection 

mechanism will be. Moreover, it must be noted that 

Alg. 1, being based on the observation of an 

inconsistency in the system of lin-ear equations, 

cannot generate false pollution detections; in other 

words, our detector yields only false negatives and no 

false positives. In the following we denote as pdet the 

probability that Alg. 1 correctly detects pollution 

when at least one polluted fragment belongs to Q. 

 

5. POLLUTER IDENTIFICATION ALGORITHM 

 

In this section we describe the algorithm we 

developed to identify the polluters in the system. We 

would like to stress that polluter identification is not 

an easy task, since the linear coding approach 

prevents the use of simple means to identify both 

which fragments have been altered and the SNs 

responsible for the damage. 

In the following we consider a proxy that accesses a 

sector S using the retrieval procedure described in 

Sec. 3, and performs sector decoding by means of 

Alg. 1. If a pollution is detected by this algorithm, the 

Proxy triggers the polluters identification stage that 

aims at identifying among the set AS of SNs storing 

the n coded fragments of S – those SNs that have 

replied to the read request with polluted fragments. 

During the polluters identification stage, the Proxy 

gathers all the n fragments corresponding to the 

sector that is found to be polluted, and uses them as 

input for the polluter identification algorithm; the 

sector is held at the Proxy (i.e. it is not forwarded to 

the requestor) to be clean are handled as usual, that is 

once they have been recovered (using a suitable 

subset of the corresponding n fragments), they are 

passed to the users that requested them. It is worth 

pointing out that normal operations and polluter 

identification occur simultaneously. 
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In the remainder of this section, we first describe the 

polluter identification algorithm (Sec. 5.1), and then 

we discuss several building blocks that it leverages 

(Sec. 5.2) to carry out identification. 

 

5.1Identification algorithm 

The polluter identification algorithm, described by 

Alg. 2, aims at computing the set of polluter SNs in 

AS using an iterative approach. In each iteration, the 

algorithm analyzes a random subset of AS , and 

employs statistical inference to compute, for each 

SN, the prob-ability of being a polluter. This 

probability drives the incremental computation of 

two sets, representing the polluters and the honest 

SNs, respectively. After each iteration the set of SNs 

yet to be analyzed shrinks until all SNs have been 

classified as either being honest or polluters. 

Our algorithm uses the sets of SN identifiers defined 

below: 

• U, containing the identifiers of all the SNs whose 

state is still unknown;  

• P, containing the identifiers of the SNs that have 

been already classified as polluters;  

• H, containing the identifiers of the SNs that have 

been already classified as honest.  

Moreover, we use the notation A ⊆R
d B to denote that 

set A is a random subset of set B, with |A| = d. 

Let us describe now the polluter identification 

algorithm, problems. To this end it builds a working 

set W ⊂ AS , of size w < n, by mixing h SNs 

randomly selected from H and the remaining w − h 

from U (lines 7-9). At startup (lines 2-3), H = ∅, so 

all the SNs are taken from U = AS ; as the 

identification proceeds, more and more (up to w − 1) 

honest SNs will be added to W, thus easing the 

inference on the state of the SNs taken from U (only 

one in the most favorable case). 

Then, the algorithm enters a loop (lines 4-22) in 

which at each iteration – uses the Decode method 

(Alg. 1) to check whether the decoding of the 

fragments contributed only by nodes in W gives rise 

to a polluted sector (line 10). If this is the case, then 

at least one SN in W is a polluter. To identify these 

nodes, we resort to a statistical inference technique, 

known as Belief Propagation (BP), that has been 

already applied to the problem of polluter 

identification in the different scenario of coded peer-

to-peer streaming [22]. 

 

In this paper, we apply BP to estimate the two SNs in 

W that are most likely to be polluter and honest (sets 

F and L at line 11, respectively) by calling the BP 

core procedure, that is presented in Alg. 5. If BP core 

succeeds (lines 12-15), then the memberships of sets 

H, P, U are updated and the for loop (lines 6 through 

17) is exited. On the contrary, i.e. if either BP core 

fails or if Decode does not detect pollution, then 

another attempt is made on a new random working 

set W up to a maximum number of trials (MaxBP ). 

When exiting the for loop (line 17) the sets H, P have 

been possibly updated with the identification of a pair 

of SNs (polluter, honest). If we are able to decode 

from the set H∪U, i.e. all the SNs identified so far 

plus all SNs still unknown, without detecting any 

pollution (line 18), then we can reliably assume all 

members of the union are honest; in such a case the 

algorithm exits the outer while loop. 

The steps of the algorithm are iterated through the 

external while loop in order to progressively move 

SNs from U to H or P until one of the following 

conditions occur (while loop condition in line 4): 

• there are no remaining SNs whose state is 

unknown, i.e. identification has been completed;  

• BP core failed all MaxBP trials to identify either 

a polluter or an honest SN, i.e. the proposed 

decision metric does not allow to discriminate 

any further;  

• the number of already identified polluters 

exceeds the maximum limit nP  .  

The first case corresponds to a successful 

termination, whereas in the latter two cases both H 

and P are emptied to signal that the algorithm failed 

to identify the polluters. 

BP core, while being statistically solid, may fail iden-

tification when pdet < 1. Therefore, all the decisions 

taken on F and L cannot be considered as completely 

trustful. To avoid misclassifications, at the end of the 

while loop (line 23), sets  H and P are tested using the 

Sanity checks method defined in Alg. 6. The main 

identi-fication algorithm successfully terminates by 

returning a non empty set P only if all sanity checks 

on H and P are passed (line 30). On the contrary, an 

additional attempt to compute P is performed up to a 

maximum number MaxAttempts. The repeated trials 

are useful since all attempts are driven by 

randomness, e.g., in the choice of working sets W, 

that can lead to different outcomes. 
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To conclude, the identification algorithm can 

terminate either with success or with failure to 

compute the set of polluters P. Therefore, it is 

characterized by the failure probability pf that 

depends on all algorithm parameters that are 

summarized in Tab. 2. It is worth pointing out that a 

limited failure probability can be tolerated since 

during the normal operations carried on by clients on 

a VD several different sector reads can trigger the 

pollution detection and, as a consequence, different 

identification rounds are available. Therefore, 

doubtful identification outputs can be skipped 

waiting for a most favorable chance. 

 

5.2Building blocks 

As discussed in the previous subsection, to carry out 

its operations Alg. 2 relies on two other procedures, 

namely BP core and Sanity checks, whose detailed 

descriptions  follow. 

 

5.2.1Belief Propagation core algorithm 

Polluter identification can be cast as a statistical 

inference problem as follows. The main idea is to 

characterize each SNs i ∈ AS by an unknown 

(hidden) binary state χi, where χi = 1 is used to 

identify a polluter and χi = 0 is used to identify an 

honest SN. The goal is then to infer 

∀i ∈ AS , p(χi = 1). 

The probability distributions of {χi} are inferred by 

carrying out the following two phases: 

1) first, we build a random instance of the so called 

factor graph G = (A, C, E) (see Alg. 3). The 

factor graph is a bipartite undirected graph where 

the first set of vertices (A) represents SNs in AS , 

while the other one (C) represents checks. The i-

th check is represented by a pair of elements c i = 

(i,Decode(Di).polluted) where:  

 the first element (i) is a check identifier;  

 the second element is a boolean check state that 

is obtained by first computing a random subset 

Di ⊆ A, and then by running the pollution 

detection and decoding algorithm (Alg. 1) on it. 

If the fragments in Di lead to a clean decoding, 

then a negative check  is created; conversely, if 

pollution is detected, then a positive check  is 

created instead. We denote |Di| = d as the check  

size. It is worth pointing out that it is necessary 

to use BP with a decoding set D of size d < w to 

have the chance to obtain negative checks, that 

represent the hints on which the identification of 

honest SNs is based. On the contrary, if we used 

d = w, then all the checks provided to BP would 

be positivethus making identification impossible. 

The arcs of the factor graph G are created as 

follows: for each check ci ∈ C the undirected arc 

(a, ci) ∈ E if a ∈ Di, i.e. if the i-th check involves 

SN a. 

2) next, we apply the Belief  propagation procedure 

to the factor graph G (see Alg.4) to obtain an 

estimate of the p(χi = 1) values given the current 

instance of G. At startup we set p(χi = 1) = 0.5 

for all vertices in A not yet identified as honest. 

This value is meant to represent the maximum 

uncertainty with respect to the hidden state of 

SNs. On the contrary, all SN in H have their p(χ i 

= 1) probabilities set to 0, i.e., honest SNs are 

polluters with zero probability.  

Subsequently, the BP algorithm is run on the factor 

graph to obtain an estimate of the p(χ i = 1) val-ues. 

The mathematical details and approximations 

required to run BP along the bipartite graph of SNs 

and checks can be found in [22]. Nonetheless,  

Alg. 4 summarizes the key steps; intuitively, a neg-

ative check ci contributes to lower the probability of 

SNs in Di to be malicious while a positive check 

would increase it. To counteract the fact that the 

checks are not fully reliable since pdet < 1, several 

runs of the BP inference are used on different ran-

dom subsets Di and the estimated probabilities are 

accumulated. As shown in Alg. 4 the BP inference 

algorithm (referred to in the pseudo-code as an 

external function named BP inference (G)) is used 

BPt times, and the output estimates p(χi = 1) are 

summed onto P (χi), that will represent the decision 

metric used for identification. At the end of the cycle, 

P (χi) is the average probability of being a polluter, 

estimated on BPt different in- stances of G. It can be 

noted that the computation of the P (χi) is based on 

several checks and factor graph instances and 

therefore the negative effect of the unreliable 

pollution detection mechanism (that could 

erroneously assign the check state) is attenuated 

when the probability of false negatives in Alg. 1 is 

low. 

Alg. 5 describes the BP core method that exploits the 

two previous algorithms to create our core decision 

method based on the output of BP. This algorithm 
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shows how to threshold P (χi) to decide on the most 

likely polluter and honest node, respectively. In 

particular, SN f is inserted in set F (containing the top 

suspect SN) only if P (χf ) exceeds the threshold ηf . 

A similar reasoning is carried out to assign an 

element to set L that contains the identity of the SN 

that is most likely to be honest (l). 

The if statement at line 3 discriminates the behavior 

of the algorithm depending on the number of SNs 

whose state is still unknown: if such a number is 

larger than k/x, we found that is convenient to use the 

probability ranking to discriminate between the most 

and least likely to be polluters and both f and l SNs 

can be identified; otherwise only the SN f with the 

largest P (χf ) is identified (in this case the number of 

SNs in ranking is limited and we do not assume the 

least likely being a honest one). This sets will then be 

used to progressively refine the identification of all 

the malicious nodes forming the sets H and P that 

have been defined previously. 

 

5.2.2 Sanity checks 

Since all phases of our method are based on an 

unreliable pollution detection mechanism (as 

discussed in Sec. 4.2, Alg. 1 may yield false 

negatives with probability pdet), to avoid 

misclassifications we also apply sanity checks 

algorithms to the output of the identification phase, 

i.e., sets H and P. To this end, Alg. 6 verifies the 

following constraints: 

• the SNs in H allow decoding of the sector 

without pollution (line 2);  

• the SNs in P are actual polluters (for loop in 

lines 3-14). This check is performed by decoding 

a working set Y, composed of one polluter from 

P and all but one honest node from H to verify 

that pollution actually occurs. This check is 

carried on all possible elements in P and H. The 

check fails as soon as a clean decoding is 

detected.  

• sector decoding does not depend on a single 

equa-tion since in this case there is clearly no 

way to verify whether such equation is polluted 

or not. Of course, this check potentially classifies 

as failed a correct identification attempt.  

 

5.3 Failure probability vs. speed trade-off  

Clearly, the failure probability p f of Alg. 2 depends 

on all its parameters and a trade-off arises between 

the algorithm speed and the p f values. In particular, 

this trade-off is determined by the: 

• robustness of the BP based inference that 

increases as the overall number of checks in the 

factor graphs we randomly generate increases. 

Of course, the larger the factor graph the slower 

Alg. 4. The size of the factor graphs is given by 

BPt · BPw;  

• thresholds ηf , ηl, and ηm in Alg. 5 determine the 

accuracy required to identify one polluter and a 

potential honest SN. Tight thresholds require to 

generate a larger number of random factor 

graphs before reliable identification (i.e., early 

exiting the for loop in lines 6-17 of Alg. 2). 

Parameter MaxBP represents an upper bound to 

the number of such attempts.  

• the maximum number of identification trials 

(MaxAttempts). Indeed, identification is 

repeatedly attempted to take advantage of 

randomness both in the choice of working sets W 

and in the creation of checks in the factor graphs. 

Clearly, the larger MaxAttempts the higher the 

probability to run a successful identification 

attempt at the expense of increasing the 

algorithm execution time.  

 

6.MATHEMATICAL  MODEL 

 

In this section, we develop a mathematical model to 

represent the average number of sector requests to 

iden-tify all NP  polluters among the NS storage nodes. 

To this end, let us define a trace of disk sector reads  

as a sequence {S(t)} where S(t) represents the t-th 

disk sector request. 

Every sector read triggers the decoding and detection 

Alg. 1; in case pollution is detected, Alg. 2 is invoked 

to attempt identification. We then observe that the NS 

SNs of the cloud storage system are progressively 

par-titioned into three disjoint subsets: identified 

polluters, unidentified polluters, and honest. 

We denote the number of identified polluters as 0 ≤ 

NI ≤ NP  and the number of unidentified polluters as 0 

≤ NU ≤ NP  , with the constraint that NI + NU = NP  . It 

follows that the number of honest nodes is equal to 

NS − NI − NU . 

The allocation of the n fragments of a sector S to 
n

x 

SNs can be viewed as just as many draws without 

replacement from all the SNs. In this case, it is well-

known that the probability a sector has been allocated 
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to nI identified polluter and to nU unidentified 

polluters 

 

 

7. EXPERIMENTAL  RESULTS 

 

references, and simulates the dynamics of the system 

(sector store and retrieval, sector pollution, etc.), as 

well as of the polluters identification algorithm. 

We consider two scenarios with increasing values of 

coding redundancy, namely n = 2k and n = 3k. Fur-

thermore, we let the MaxAttempts parameter vary in 

the set {10, 25, 50, 100}. Overall, this results in 8 

distinct operational scenarios. 

The simulator is used to estimate both nclean and tclean; 

their values clearly depend on the status of each one 

of the sectors in the trace (i.e., either “clean” or 

“polluted”). 

In our experiments, we use as workload a set of real-

world disk traces [23], that represent disk access 

patterns of various types, generated by applications 

and services of different kinds. More specifically, we 

consider the following Block I/O traces belonging to 

the Microsoft Production Server Traces: Display Ads 

Data Server (DADS), Display Ads Payload (DAPAY) , 

MSN Storage CFS (CFS) , Radius Authentication 

(RADAUT), and Radius Back End SQL Server 

(RADBE). 

In all the experiments, we consider a system config-

uration encompassing NS = 128 SNs, and we model 

network latencies as discussed in [2], that is, by using 

the latency values measured in the Internet Delay 

Space Synthesizer [24]. 

Given that the sequence of sectors requested in each 

trace is fixed, but that polluter nodes can be placed 

anywhere in the system, for each scenario we run 

several experiments in which we vary the placement 

of polluter nodes by placing them at random of the 

set of SNs, and we compute average values for n clean 

and tclean (for each average, we compute the 95% 

confidence interval with a ±2.5% relative error). 

 

7.3.2 Mathematical model validation  

To validate the model we developed in Sec. 6, we 

com-pare the values of nclean computed by means of 

Eq. 3 against those obtained via simulation. 

We start by assessing whether the performance of the 

identification algorithm are affected by the specific 

trace used as workload. To this end, we perform 

simulation experiments in which – for each scenario 

we use as workload one of the traces mentioned 

above, and we compute the corresponding value of 

nclean. 

The results corresponding to the n = 2k and n = 3k 

scenarios for MaxAttempts = 100 are shown in Fig. 

5, where nclean is plotted as a function of the total 

number of polluters in the system NP  (error vertical 

bars are very tight and are not shown to improve 

readability). 

As can be seen from this figure, nclean does not 

depend on the specific trace. Similar results have 

been obtained for the other values of MaxAttempts 

we consider, that are thus not reported here for the 

sake of space. This, in turn, means that any one of the 

five traces we consider is a good representative of all 

the other ones, as far as the behavior of the detection 

algorithm is concerned.  
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Fig. 6. Comparison of the nclean values for the DADS 

trace computed by the model and by the s imulator for 

n = 2k and n = 3k. Vertical bars centered on data 

points represent confidence intervals using anyone of 

these traces that, in this particular case, we chose to 

be DADS. 

The values for nclean computed by means of Eq. 3, as 

well as those computed by the simulator for the 

above trace are shown in Fig. 6 for n = 2k and n = 3k. 

As can be seen from Fig. 6, the values of n clean 

computed by the simulator are practically identical to 

those computed by Eq. 3, thus confirming the 

accuracy of results produced by the model. 

 

7.3.3 Performance analysis  

Let us now discuss the results concerning nclean and 

tclean, starting with the former ones. The independence 

of these results from the specific trace allows us to 

report only those corresponding to the DADS trace. 

In Fig. 7 we show the nclean values obtained from Eq. 

3 for different values n of code redundancy. From 

this figure, we can note that redundancy has a 

beneficial impact on system resilience. Indeed, n = 3k 

redundancy allows a dramatic reduction of the 

average number of sector accesses before getting rid 

of polluters w.r.t. the baseline n = 2k. Further 

increments of redundancy yield negligible benefits 

(as witnessed by the inset in Fig. 7) although 

redundancy n = 5k allows the system to be cleaned 

when half of the SNs are malicious in just about 43 

sector accesses on average. 

Let us now turn to tclean that, as already mentioned, 

depends both on the characteristics of the system and 

of the specific trace used as workload, and on the 

time taken by each execution of the detection 

algorithm, that in turn depends on the value of 

MaxAttempts. To study the impact of this parameter 

on tclean, we perform a set of experiments in which, 

for each scenario and trace, we use different value of 

MaxAttempts chosen in the set{10, 25, 50, 100}. 

The results of the experiments corresponding to the  

DADS trace are shown in Fig. 8 (those corresponding 

to the other traces do not differ significantly, so they 

are not reported here to save space). 

As can be seen from these results, tclean is not affected 

by the value of MaxAttempts for lower values of the 

number of polluter nodes (10 for n = 2k and 15 for n 

= 3k), but for larger number of polluter nodes in the 

system differences appear. In particular, we note that 

the lower the values of MaxAttempts, the higher tclean. 

This is due to the fact that when the number m of 

polluters in a single sector approaches the maximum 

number of polluters that can be handled by our 

algorithm (nP  ), the failure probability steeply 

increases; furthermore, the lower the value of 

MaxAttempts, the higher the failure probability and, 

consequently, the larger the number of polluted 

sectors that must be processed in order to clean the 

system (and, consequently, the time that elapses 

before the system is cleaned). This effect becomes 

larger and larger as the number NP  of polluter nodes 

in the system increases, since the larger NP  , the 

higher the probability that a polluted sector has been 

polluted by a number of polluters equal to or larger 

than the maximum number of polluters that can be 

tolerated by the algorithm (nP  ). 

 

8.CONCLUSIONS 

 

In this paper we have shown that rateless codes allow 

one to design a simple pollution detection mechanism 

that can be used to check data integrity during the 

normal read operations of a cloud-based storage sys-

tem. Nonetheless, the detection mechanism alone is 

not enough to solve the most important issue, i.e. to 

locate the malicious storage nodes in order to remove 

them from the system. Here we have proposed an 

algorithmic solution that exploits both pollution 

detection, enabled by rateless codes, and statistical 

inference to iteratively identify the malicious nodes. 

We have provided an an-alytical model to estimate 

the time required to identify all polluters in a 

complete cloud storage system; we also analyzed the 

effectiveness of our approach as a function of several 

system parameters. Finally, we have simulated an end 

to end distributed cloud storage scenario and, by 
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taking real disk traces into account, we have shown 

that the proposed technique achieves the desired level 

of robustness to polluters during realistic disk usage. 

Future works include the study of other rateless code 

families, e.g. band codes proposed in [25], in order to 

investigate possible improvements both in terms of 

identification performance and computational cost – 
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