
© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146388 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 524

Radix-2 FFT Bit Reversal Architecture to Process double

Data Streams for MIMO

S.Prasanna Devi
1
, Ms.G.Kavitha M.Tech

2

1
PG scholar,Department of ECE, Sri Venkateswara College of Engineering and Technololgy, Thiruvallur

2
 Assistant professor, Department of ECE, Sri Venkateswara College of Engineering and Technololgy

Abstract- Bit-reversal is an essential part of the fast

Fourier transform. However, compared to the amount

of works on FFT architectures, much fewer works are

dedicated to bit-reversal circuits until recent years. In

this brief, the minimum latency and memory required

for calculating the bit-reversal of continuous-flow

parallel data are formulated. The proposed circuit is

simple and efficient for reordering the output samples

of parallel pipelined FFT processors. The proposed

approach can be Implemented using Verilog HDL and

Simulated by Modelsim 6.4 c. Finally it‟s synthesized

by Xilinx tool.

Index Terms- Bit-reversal circuit, fast Fourier

transform (FFT), MDC, MDF, natural-order FFT

output.

I. INTRODUCTION

FAST FOURIER transform (FFT) is widely used in

var- ious signal processing applications, such as

spectrum analysis, image and video signal

processing, and communi- cation systems. Over the

past decades, various FFT hardware architectures

have been investigated, including pipelined FFT

architectures and memory-based FFT architectures.

Pipelined FFTs include single-path delay feedback

(SDF) [1], [2], single-path delay commutator (SDC)

[3]–[5], multi-path delay feedback (MDF) [6]–[8],

and multi-path delay commutator (MDC) [9]–[12]

architectures. They have the advantage of high

throughput, but demand high area cost especially for

long-length FFTs. In contrast, memory-based FFT

architec- tures usually have low area cost, because

smaller numbers of butterfly processing elements

(PE) are adopted to sequentially execute all the

butterfly operations. Accordingly, their through-

puts are often limited.

Recently, parallel pipelined FFT architectures [6]–

[13] were proposed to enhance throughput by

increasing parallelism of the whole architecture. As

such, they can meet the demand of extremely high

data rates of current state-of-art wireless com-

munication systems, such as UWB (Ultra Wideband),

IEEE 802.15.3c, or IEEE 802.11ac/ad. Two major

function blocks should be designed for pipelined FFT

processors, one is the FFT architecture itself and the

other one is the bit-reversal circuit. The function of

the bit-reversal circuit is to convert the non-nat- ural

output order of the FFT architecture to natural order.

This feature is especially important for

communication systems, because FFT processors are

usually followed by frequency-do- main equalizer

which requires timely and natural-order input data.

However, much fewer works are dedicated to bit-

reversal circuit design in the literature until recent

years, compared to the amount of works on FFT

architecture designs. For general memory-based FFT

architectures, there are memory addressing schemes

[14]–[16], which facilitate natural-order FFT out-

puts. For pipelined FFT, bit-reversal circuits must

support continuous-flow processing for the

consideration of seamless generation of FFT outputs,

due to contiguous inputs. Several works in the

literature [2]–[5], [17]–[19], proposed bit-reversal

circuits for single-path pipelined FFT architectures.

For parallel pipelined FFTs, the design of the

reordering circuits is even more challenging as it

requires reordering multiple concurrent FFT outputs

simultaneously. Thus, only a few works in the

literature discuss this problem [9], [10], [12]. Among

them, reordering circuits for parallel data are

described in [9], [10]. The circuit proposed in [9]

calculates the bit reversal for par- allel output data,

but its hardware complexity is high. On the other

hand, the outputs of FFTs in [10] are in an order

different from bit reversal, and therefore the

reordering circuit is only applicable to this specific

order.

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146388 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 525

This work proposes a new bit-reversal circuit for

parallel data that can be used for both MDC and

MDF FFT architectures. The main contributions of

this work are twofold. First, it is the first parallel bit-

reversal circuit based on single-port memory. Be-

sides, it is area-efficient, as the total memory sizei,

where is FFT length. Second, the proposed reordering

mechanism

is regular and flexible for supporting general power-

of-2 FFT sizes, as well as variable-length bit reversal.

The rest of this article is organized as follows. In

Section II, existing bit-re- versal circuits are

reviewed. In Section III, the design problem for a

parallel bit reversal circuit is formulated. In Section

IV, the proposed bit-reversal circuit is presented.

Implementations and comparisons with existing bit

reversal circuits are made in Section V, followed by

conclusions in Section VI.

II.REVIEW OF EXISTING BIT REVERSAL

CIRCUITS

There are various bit-reversal addressing schemes

proposed in the literature. For non-continuous data

flow, the schemes proposed in [20]–[23] focus on

calculating the bit reversal on data stored in a

memory. In [24], [25], address generators for

memory-based FFTs are proposed. Finally, for

continuous data flow, solutions to bit reversal on

serial data were provided in [2]–[5], [11], [17]–[19],

and solutions for parallel data are provided in [9],

[10], [12].

A.Bit-Reversal Circuit for Single-Path Serial Data

In [17], the bit reversal on serial data is calculated

using a double buffering strategy. This consists of

two memories of size where even and odd FFT

output sequences are written alter- natively in the

memories. The bit reversal can also be calculated

using a single memory of size . This is achieved

by generating the memory address in natural and bit-

reversed order, alterna- tively for even and odd

sequences [18]. The bit reversal circuit in

[11] targets real-valued FFTs. Although the

architectures in [11] are for parallel data, the bit

reversal circuit only applies to serial data. For SDC

FFT architectures, the output reordering can be

calculated by using two memories of addresses [3]–

[5]. Al- ternatively, the output reordering circuit can

be integrated with the last stage of the FFT

architecture [3]–[5]. Finally, in [19], a novel circuit

for calculating bit reversal on serial data is pro-

posed. The circuit consists of cascaded buffers and

multiplexers, which can flexibly convert the bit-

reversed output for common FFT radices, including

radix-2, , radix-4, and radix-8. This approach

provides the optimum circuits for bit reversal on

serial data with minimum memory space.

B. Bit-reversal Circuits for Parallel Data

For parallel pipelined FFTs, only few works in the

literature propose solutions to reorder the output data

in parallel FFT ar- chitectures [9], [10], [12]. In [9], a

bit-reversal circuit for 8-par- allel data is proposed.

For an -point FFT, this circuit requires an -address

memory for each parallel stream. In [10], the out-

puts of the FFT are provided in an order different to

bit-reversal. Thus, its reordering circuit is specific for

the FFT architecture it proposed, but not for other

MDC and MDF FFT architectures. Finally, [12]

presents parallel MDC FFT architectures. It

also discusses the possibility of reordering the bit-

reversed outputs by using a total memory of.

However, as the paper focuses on the FFT

architectures, the bit reversal cir- cuit is not

described.

III.PROBLEM FORMULATION OF PARALLEL

BIT-REVERSAL CIRCUIT

Given an-point discrete Fourier transform (DFT):

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146388 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 526

IV.PROPOSED PARALLEL BIT REVERSAL

CIRCUIT

I. Based on previous discussion, a new parallel bit

reversal cir-cuit for parallel pipelined FFT

processors is proposed. As shown in Fig. 3, the

architecture supports continuous-flow operation

and calculates the bit reversals on parallel

inputs. The ar- chitecture is composed of input

and output commutators, two groups of memory

banks, and one controller. The Write Com-

mutator, denoted as CMT_WR, plays the role of

switching FFT processor outputs to proper

memory banks according to a pre-defined

switching mechanism, which will be explained

later. The Read Commutator, denoted as

CMT_RD, helps to switch the memory banks’

output to proper output paths. The memory is

partitioned into two single-port memory groups,

A and B, each containing memory banks.

Furthermore, each memory bank stores data

samples, leading to a total memory size Between

the memory and the Read Commu- tator,

multiplexers are used to select the memory

groups. Fi- nally, the control block generates the

memory addresses for

Fig. 3. Proposed parallel bit-reversal circuit.

read/write operations in each clock cycle. In addition,

it also generates the control signals for commutators.

A. Switching Mechanism

The switching mechanism is based on the idea that

the par- allel inputs should be written into different

banks. Likewise, the parallel outputs must be read

from different banks. In order to guarantee this, a

switching mechanism is devised as follows. The

switching patterns of write commutator for 4-par-

allel and 8-parallel paths are shown in Fig. 4(a) and

(b), respec- tively. Under switching pattern , the

destination bank index for output from path , given a

-parallel architecture can be derived through modulo

operation over .

(2)

For example, consider the structure of 4-parallel

paths, when switching pattern is 3, the path 2 output

will be written to memory bank 1, i.e., due to the

operation of mod . As shown in Fig. 2,

the adjacent s ina set will be stored in

different memory banks by changing the switching

patterns in every (i.e.,) cycles. The switching pattern

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146388 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 527

is arranged as, which follows the bit-reverse form of -

bit binary representation. Hence, the switching

pattern at clock cycle can be derived as:

 (3)

where is the floor function. Although other

switching pat- terns are feasible, the proposed pattern

is much easier for overall design according to our

extensive experiments. The commutator CMT_RD

operates in a similar way to CMT_WR, except the

difference that it is to switch the output from memory

bank to proper output path based on the following

formula:

 (4)

For general and , the detailed Write Commutator and

Read Commutator architectures are shown in Fig.

5(a) and Fig. 5(b), respectively.

B. General Scheduling Rule for Read/Write

Operations

To access the two memory groups efficiently under

contin- uous-flow FFT operation, the selection of

memory group for write or read operations at each

clock cycle should be well

Fig. 4. Switching patterns of the proposed write

commutator (a) 4-parallel case

(b) 8-parallel case.

 Fig. 5. Commutator architectures (a) CMT_WR (b)

CMT_RD.

scheduled. The proposed scheduling mechanism can

be sum- marized as two types for all power-of-2 FFT

lengths, depending on and . Let,

and denote as or , if it is

an even integer or odd integer, respec- tively, where

is an integer. The memory write/read scheduling of

two memory groups for even-value is shown in Fig.

6(a), while the scheduling mechanism for odd-value

is shown in Fig. 6(b). Without loss of generality, FFT

output from different symbols are assumed for

continuous-flow operation and each symbol period

is equal to , because samples are gen- erated per

clock cycle. First, for the first case, in the first

clock cycles, the permuted data after write

commutator are written into memory group A, and

then followed by the data writing into memory group

B in the next clock cycles. Such sched- uling will

be repeated periodically. During the last clock cy-

cles of symbol 1 period, the controller will start the

FFT output process by reading data from memory

group A in natural order, i.e., start from

. The released memory space will

then be available for storing the permuted FFT output

of the

© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 528

Fig. 6. General schedule mechanism for write/read

operations (a) when is even (b) when is odd.

second symbol after clock cycles. Those

procedures will be applied to memory group B

similarly. For the case of odd , in the first clock

cycles, the permuted data after write commu- tator

are written into memory group A, and then followed

by the data writing into memory group B in the next

 clock cycles. Similarly, the controller will start

the read process in clock cycle of

symbol 1. The released memory locations will be

reused by the next symbol clock cycles later.

With the above seamless scheduling, the two groups

of memory banks act as cycle-based ping-pong

buffers, instead of conventional symbol-based ping-

pong buffers. Hence, the memory space can be

utilized very efficiently with smaller single-port

memory of size , as compared with conventional

designs with larger memories.

C. Address Generations

The write/read address generation for the proposed

parallel bit-reversal circuit is very simple and regular.

Based on the pre- vious discussion, address

generation can be derived based on a cycle counter

. For FFT length , counts from 0 toAssume

that the counter value is represented in-bit binary

form, as , where, are defined in

Section III. The write address generation differs for

odd and even symbols. Assuming symbol is counted

from 1, then for odd symbols, the permuted data after

write commutator will be written into each memory

banks of group A or group B starting from address 0,

and incremented by 1 for each following write

operations on that group. By referring to the

read/write scheduling timing diagram shown in Fig.

6, the write address of memory bank for either group

A or group B in an odd-symbol period can be

represented as

 (5)

In contrast, for even symbols, the permuted data

after write commutator will be written into the

locations of their bit-reversed counterparts in

previous symbol. Hence, the ad- dresses for an even

symbol can be derived by first computing the

addresses of their counterparts in the previous

symbol,

Fig. 7. Write address generation: (a) odd symbol, (b)

even symbol.

© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 529

Fig. 8. Example of 8-parallel 128-point FFT. (a)

output sequences from FFT processor (b) permuted

sequences after commutator CMT_WR (c) the

scheduling of write/read operations (d) the

distributions of in memory banks after the 15th

cycle (e) the distributions of in memory banks

after the 31th cycle.

© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 530

Fig. 9. Example of 8-parallel 256-point FFT (a) original sequences from FFT processor (b) permuted sequences after

commutator CMT_WR (c) the scheduling of write/read operations (d) the distribution of in eight memory

banks after the 31th cycle (e) the scheduling of in eight memory banks after the 63th cycle.

Fig. 10. An example of failed scheduling approach for 8-parallel 256-point FFT.

© August 2017 | IJIRT | Volume 4 Issue 3 | ISSN: 2349-6002

IJIRT 144769 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 531

ago. The distribution of all s of symbol 1 in the

two memory groups after clock cycle 31 is shown in

Fig. 9(d), while the distribution of all s of

symbol 2 after clock cycle 63 is shown in Fig. 9(e).

Obviously, there are other possible scheduling

approaches, for example, the scheduling shown in

Fig. 10, where the first two output sets are written to

memory group A, followed by two output sets written

into group B. Under this arrangement, read

operations should be scheduled for group A in clock

cycles 30 and 31. However, was stored in group

B at clock cycle 2. It means that one should read

 from group B in clock 31, which violates the

pre-scheduled write operation of group B in clock

cycle 31, because single-port memory is assumed.

Therefore, such scheduling is not allowed.

V.IMPLEMENTATIONS AND

COMPARISONS WITH EXISTING WORKS

The proposed parallel bit-reversal architecture can

support general power-of-2 FFT lengths. To verify its

correctness for

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146388 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 532

column shows whether those designs support

continuous-flow operations and variable FFT length

or not.

in [12] calculates the bit reversal for parallel data

using approx. irately the same memory as the

proposed approach. However, the detail of the bit-

reversal circuit that carries out the reordering is not

described. As such, the proposed design is the first

cir- cuit that calculates the bit reversal algorithm for

parallel data using only a total memory size of words,

and in particular, only single-port RAM is used,

instead of two-port RAM adopted by all the

compared designs. Take 8-parallel case for example,

the area comparisons between a single-port 32-bit

RAM and a two-port 32-bit RAM under different

FFT sizes for both 90-nm

TABLE II MEMORY AREA COMPARISONS FOR

DIFFERENT FFT SIZES USING SINGLE-PORT

RAM AND TWO-PORT RAM

and 55-nm processes are listed in Table II. Since no

two-port synchronous SRAM are provided in our

memory compiler tool, single-port Register File and

two-port Register File are chosen for comparisons.

For each FFT size, in addition to the total re- quired

area data, the table also shows the area ratio (in per-

centage) of the single-port RAM over the two-port

RAM, where the two-port RAM is set as 100%. As

shown, a larger FFT size has better area reduction

ratio than a smaller FFT size, which can be up 50%,

while at least around 30% area reduction can be

obtained for 2048-point FFT. However, for FFT sizes

smaller than or equal to 1024, the area reduction

ratios will be lower than that of 2048, because now

the depth of each memory bank is considerably small,

i.e., only 64 for each single-port bank of a 1024-point

FFT. In other words, flip-flop registers are preferred

to memory macros in those cases.

VI.CONCLUSION

In this work, a new parallel bit-reversal circuit is

proposed for parallel MDF and MDC pipelined FFT

processors. The proposed architecture is cost-

effective because only single-port RAM of total size

is required for -point continuous-flow FFT. Besides,

the addressing scheme is simple and regular for all

power-of-2 FFT lengths, and it supports variable

length processing. For future work, it is a very

challenging task to further improve the proposed

architectures so that the required memory space can

be less than . In addition, generalization of the

proposed design techniques to MIMO FFTs with very

high throughput is also a good research direction.

REFERENCES

[1] S. He and M. Torkelson, “Designing pipeline

FFT processor for OFDM (de)modulation,” in

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146388 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 533

Proc. URSI Int. Symp. Signals, Syst., Electron.,

1998, pp. 257–262.

[2] S. Lee and S. C. Park, “A modified SDF

architecture for mixed DIF/DIT FFT,” in Proc.

IEEE Int. Symp. Circuits Syst., 2007, pp. 2590–

2593.

[3] Y. N. Chang, “An efficient VLSI architecture for

normal I/O order pipeline FFT design,” IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no.

12, pp. 1234–1238, 2008.

[4] Y. N. Chang, “Design of an 8192-point

sequential I/O FFT chip,” in Proc. World Congr.

Eng. Comput. Sci. (WCECS), 2012, vol. II.

[5] X. Liu, F. Yu, and Z. Wang, “A pipelined

architecture for normal I/O order FFT,” J.

Zhejiang Univ. Sci. C (Comput. Electron.), pp.

76–82, Jun. 2011.

[6] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s

FFT/IFFT processor for UWB applications,”

IEEE J. Solid-State Circuits, vol. 40, no. 8, pp.

1726–1735, Aug. 2005.

[7] M. Shin and H. Lee, “A high-speed four-parallel

radix- FFT/IFFT processor for UWB

applications,” in Proc. IEEE Int. Symp. Circuits

Syst., 2008, pp. 960–963.

[8] S. N. Tang, J. W. Tsai, and T. Y. Chang, “A 2.4-

GS/s FFT processor for OFDM-Based WPAN

applications,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 6, no. 57, pp. 451–455, Jun. 2010.

[9] S. Yoshizawa, A. Orikasa, and Y. Miyanaga,

“An area and power ef- ficient pipeline FFT

processor for 8 8 MIMO-OFDM systems,” in

Proc. IEEE Int. Symp. Circuits Syst., 2011, pp.

2705–2708.

[10] K.-J. Yang, S.-H. Tsai, and G. C. H. Chuang,

“MDC FFT/IFFT pro- cessor with variable

length for MIMO-OFDM Systems,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 21,

no. 4, pp. 720–731, 2013.

[11] M. Ayinala, M. Brown, and K. K. Parhi,

“Pipelined parallel FFT archi- tectures via

folding transforms,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 20, no. 6, pp.

1068–1081, 2012.

[12] M. Garrido, J. Grajal, M. A. Sanchez, and O.

Gustafsson, “Pipelined radix- feedforward

FFT architectures,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 21, no. 1, pp. 23–

32, 2013.

[13] E. H. Wold and A. M. Despain, “Pipeline and

parallel-pipeline FFT processors for VLSI

implementations,” IEEE Trans. Comput., vol. C-

33, no. 5, pp. 414–426, May 1984.

[14] H. Sorokin and J. Takala, “Conflict-free parallel

access scheme for mixed-radix FFT supporting

I/O permutations,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., 2011, pp.

1709–1712.

[15] S. J. Huang and S. G. Chen, “A high-throughput

radix-16 FFT processor with parallel and normal

input/output ordering for IEEE 802.15.3c

systems,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 59, no. 8, pp. 1752–1765, 2012.

[16] H. S. Hu, H. Y. Chen, and S.-J. Jou, “Novel FFT

processor with par- allel-in-parallel-out in

normal order,” in Proc. Int. Symp. VLSI Design,

Autom., Test, 2009, pp. 150–153.

[17] F. Kristensen, P. Nilsson, and A. Olsson,

“Flexible baseband trans- mitter for OFDM,” in

Proc. IASTED Conf. Circuits Signals Syst., May

2003, pp. 356–361.

[18] T. S. Chakraborty and S. Chakrabarti, “On

output reorder buffer design of bit-reversed

pipelined continuous data FFT architecture,” in

Proc. IEEE Asia Pac. Conf. Circuits Syst.

(APCCAS), 2008, pp. 1132–1135.

[19] M. Garrido, J. Grajal, and O. Gustafsson,

“Optimum circuits for bit reversal,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp.

657–661, 2011.

[20] D. Sundararajan, M. Omair Ahmad, and M. N. S.

Swamy, “A fast FFT bit-reversal algorithm,”

IEEE Trans. Circuits Syst. II, Analog Digit.

Signal Process., vol. 41, no. 10, pp. 701–703,

1994.

[21] J. M. Rius and R. De Porrata-Doria, “New FFT

bit-reversal algorithm,” IEEE Trans. Signal

Process., vol. 43, no. 4, pp. 991–994, 1995.

[22] J. Prado, “A new fast bit-reversal permutation

algorithm based on sym- metry,” IEEE Signal

Process. Lett., vol. 11, no. 12, pp. 933–936,

2004.

[23] M. A. Jaber and D. Massicotte, “A novel

approach for FFT data reordering,” in Proc.

IEEE Int. Symp. Circuits Syst., 2010, pp. 1615–

1618.

[24] T. C. Choinski and T. T. Tylaska, “Generation of

digit reversed address sequences for fast fourier

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146388 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 534

transforms,” IEEE Trans. Comput., vol. 40, no.

6, pp. 780–784, 1991.

[25] S. H. Ok and B. I. Moon, “A digit reversal

circuit for the variable-length radix-4 FFT,” Fut.

Gener. Commun. Netw., vol. 2, pp. 496–500,

2007

