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Abstract- Autonomous robotic systems and intelligent 

artificial agent’s capability have advanced dramatically. 

Voice-based digital Assistants such as Apple’s S iri and 

Google’s Now are currently booming.  Artificial 

Intelligence is being used in management fields like 

assistance and monitoring, since a machine has become 

capable of learning simple activities of humans. PDAs 

are built to help the user get things done (e.g., setting up 

an alarm/reminder/meeting, taking notes, creating lists) 

and provide easy access to personal/external structured 

data, web services, and applications. In this paper we 

use AI and its computing capabilities to build a personal 

assistant application to help user in accomplishing its 

task and make him productive in his routine .Speech 

recognition as the man machine interface plays an 

important role in the field of AI, since it’s a hand free 

option to give instructions to a machine. In this paper 

we use Hidden Markov Model to illustrate how speech 

recognition actually happens. We also explain use of 

neural network which is used to give learning capability 

to our assistant.   We intend to build a personal 

assistant agent capable to discover the user’s habits, 

abilities, preferences, and goals, even more accurately 

anticipating the user’s intentions. 

 

Index Terms- Artificial Intelligence, Personal Assistant, 

Neural Network, Speech Recognition, Hidden Markov 

Model.   

I. INTRODUCTION 

 

There has been as significant increase in the use of 

personal assistants in managing user task and 

activities. As the need and expectation to do more 

grew, despite improvements, a limited natural user 

interface has remained as one of the major 

bottlenecks in interacting with these devices. PDAs 

(also known as virtual assistants) precisely target this 

problem and have the promise of enhancing a user‘s 

productivity by either proactively providing the 

information the user needs in the right context (i.e., 

time and place) or reactively answering a user‘s 

questions and completing tasks through natural 

language. Tasks can be related to device 

functionality, applications, or web services. Over the 

last 20 years, researchers have investigated 

personalized virtual assistant agents targeting specific 

domains, including tourism, elder care, device 

control, and home and office applications. However, 

attempts at bringing them to market earlier have 

failed because of their limited utility. Over the past 

five years, there has been tremendous investment in 

PDA technology by both small and big technology 

companies. Siri, Google Now Cortana and Alexa are 

the major personal assistants 

In the market today, and they provide proactive 

and/or reactive assistance to the user. Proactive 

assistance refers to the agent taking an action to assist 

the user without the users  

Explicit request. Reactive assistance refers to the 

agent responding to the user‘s voice or typed 

command to assist him or her. The number of 

smartphone users using PDAs increased from 30% in 

2013 to 65% in 2015 indicating increased adoption. 

Personal Assistants have become a key capability in 

most smartphones. They are now also deployed in 

tablets, laptops, desktop PCs, and headless devices 

and some are also even integrated into operating 

systems. These agents are designed to be personal, 

they know their user‘s profile, whereabouts, 

schedules, and so forth. They can proactively start 

interactions with their user through notifications and 

system initiated questions or reactively respond to 

user requests. User– PDA interactions typically take 

place via natural language, where the user speaks to 

the agent as if he or she were speaking to a real 

human assistant. 

A personal assistant is a Meta layer of intelligence 

that sits on top of other services and applications and 

performs actions using these services and 

applications to fulfill the user‘s intent. A user‘s intent 

could be explicit, where the user commands the 

system to perform an action, or it could be inferred, 

where the agent notifies or makes suggestions upon 

evaluation of one or more triggering conditions it has 

been tracking. Personal assistants are built to help the 

user get things done (e.g., setting up an 
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alarm/reminder/meeting, taking notes, creating lists) 

and provide easy access to personal/external 

structured data, web services, and applications (e.g., 

finding the user‘s documents, locating a place, 

making reservations, playing music). They also assist 

the user in his or her daily schedule and routine by 

serving notifications and alerts based on contextual 

information, such as time, user location, and 

feeds/information produced by various web services, 

given the user‘s interests (e.g., commute alerts 

to/from work, meeting reminders, concert 

suggestions). Collectively, these functionalities are 

expected to make the user more productive in 

managing his or her work and personal life. In this 

paper we describe a simple architecture of a personal 

assistant and a neural network to embed learning 

capability into the assistant. We also describe Hidden 

Markov Model to illustrate speech recognition 

application.  

 

  II. PERSONAL ASSISTANT MODEL  

 

Our common understanding of a personal assistant is 

that of a person (or an agent) who is able to provide 

distinct help at a given time and in a given activity 

context. An important characteristic of personal 

assistants is that they adapt to the distinct demands of 

their ‗master‘ and furthermore (over time) 

progressively pay attention to her/his personal 

preferences and routines. Also, as by their definition, 

personal assistants should each be helping only one 

person, making this one-to-one relationship between 

assistant and ‗master‘ a crucial benefit. Hence, when 

we try to approach this subject from a more technical 

perspective, we already find a set of requirements and 

expectations coming from users. Among the most 

requested features when thinking of digital assistants, 

are simplicity, flexibility and easiness of interaction. 

Voice-based input/output interfaces may be the 

easiest way to fulfill these requirements. The 

scenarios that the PDAs support can be divided into 

two main categories: 1) proactive and 2) reactive 

assistance. The conceptual agent architecture 

designed to support these two modes of assistance is 

shown in Figure .The system architecture depicts 

proactive and reactive user experiences, data, and 

service end points. Reactive assistance is shown in 

where the user issues an explicit natural language 

command (e.g., ―book me a taxi‖) to the agent. The 

user request is handled through a set of reactive 

assistance components, such as speech recognition, 

LU, and DM. The data coming from various back 

ends, and applications are served to the user 

according to the constraints specified in the natural 

language query. The experience (reactive and/or 

proactive) can be served in one or more of the 

different device or service end points. Proactive 

assistance involves anticipatory computing, where 

the personal digital agent does things in a contextual 

manner (i.e., at the right time and place) that it 

expects is valuable to the user without an explicit 

user request. Proactive assistance makes use of 

inference, user modeling, and ranking to power 

experiences. Backend data, device, applications, and 

web services signals are leveraged for proactive 

inference and triggering. Even though proactive and 

reactive parts of the current PDA architectures are 

built in isolation, in principle they can use a single 

architecture to enable both types of experiences. In 

fact, most proactive scenarios have reactive 

extensions and vice versa. For example, if the user 

makes a restaurant reservation (reactively), the agent 

may (proactively) suggest a movie after the dinner or 

may offer to book a cab to take the user to the 

restaurant. Data and context are shared between the 

two assistance modes. Next, we focus on the 

proactive system architecture and the components 

that power proactive scenarios. Proactive assistance 

is based on the theory of proactivity that describes 

user desires and a model of helpfulness .The goal is 

to provide assistance to automate tasks or further the 

user‘s interests for things he or she cares about, all 

within context, without explicit user request. 

 

Figure 1. Architecture of Assistant 
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To achieve that, the agent is designed to possess a set 

of attributes; it should be valuable in that it advances 

the user‘s interests and tasks, while not interfering 

with the user‘s own activities or attention unless it 

has the user‘s explicit approval. It should be 

unimposing. The agent should be transparent in what 

it knows about the user. It should be anticipatory and 

know the future needs of the user and bring 

opportunities to the surface. The agent should also 

continuously learn and refine its decisions from the 

feedback signals it receives regarding the actions it 

takes. These principles put the user at the center, and 

the agent‘s actions are considered valuable only if 

they ultimately add value for the user. Proactive 

assistance operates on the proactivity continuum, 

which ranges from zero to full automation, allowing 

for the following scenarios: 

I) Do it yourself (no help from the agent) 

II) User tells the agent what to pay attention to 

(notifications/alerts) 

III) Agent infers user‘s habits/patterns and 

makes suggestions(inference/suggestions)  

IV) Agent makes decisions and takes actions 

(full autonomy on task decisions/executions).  

Most of the currently supported proactive scenarios 

are notifications/alerts and suggestions. Even though 

there is some preliminary work, none of the agents in 

production supports autonomous decision making 

and action taking on behalf of the user without 

confirmation. 

 

             III. Artificial Neural Network 

Artificial Neural Network is a supervised machine 

learning concept which is a type of connectionist 

computer system inspired by the biological neural 

networks that constitutes the animal brains. An 

Artifical Neural Network is a collection of nodes 

called Artificial Neurons (analogous to neurons 

present in brains). Each connection (Synapse) 

between neurons can transmit data in forward 

direction, the connections are weighted i.e. while 

transferring data the cost is multiplied to the data. 

Each node or neuron has computational property 

which computes all the input it receives to deliver an 

output. In common ANN implementations, the 

synapse signal is a real number, and the output of 

each neuron is calculated by a Non-linear function of 

the sum of its inputs. Neurons and synapses typically 

adjusts their weights as learning proceeds. The 

weight increases or decreases the strength of the 

signal that it sends across the synapse. Neurons may 

have a threshold such that only if the aggregate signal 

crosses that threshold is the signal sent. Typically, 

neurons are organized in layers. Different layers may 

perform different kinds of transformations on their 

inputs. Signals travel from the first (input), to the last 

(output) layer, possibly after traversing the layers 

multiple times. In general the layers are divided into 

three parts the first is the Input Layer which contains 

all the input elements, second layer is called Hidden 

Layer, this layer may contain multiple layers 

depending on the complexity of the problem or the 

architecture of the system, the final or third layer is 

the Output Layer which represents the output of the 

system. The input layer has exactly the same number 

of nodes as the number of attributes present in the 

input. The number of nodes present in hidden layer 

and output layer depends on the architecture of 

system and the required format of the output. An 

example of Neural Network is given below in Figure 

2. 

 
Figure 2. Representation of Artificial Neural Network 

As shown in figure every node in a layer is connected 

to every other node in the next layer. The Weights of 

the Synapse are the important parameters which are 

calculated by repeated use of the training data during 

the training period. The training of the ANN‘s is 

carried out in two phases which are Forward 

propagation and Back propagation.  

The Forward propagation is used to calculate the 

output of the system given the input elements. The 

Neuron computes the inputs by multiplying all of its 
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inputs with the weights of their respective Synapses 

and then adding the result of all of them. 

 
       Figure 3. Forward Propagation of one Neuron 

For the Neuron in Figure 3 the forward propagation 

or its output h(x) will be calculated as  

            z = ∑ xi*wi                                   (1) 

            ℎө(x) = S(z)                  (2) 

where, 

          xi = input element. 

          wi = weight of Synapse connecting the nodes  

          S(z) = Sigmoid function  

The BackPropagation is the phase where the output 

of the system is compared with the actual output 

provided in the training set. Backpropagation 

distributes the error term back up through the layers, 

by modifying the weights at each node. 

 

                  IV. HIDDEN MARKOV MODEL  

 

Hidden Markov model (HMM) is a tool for 

modelling time series data. They are used in almost 

all current speech recognition systems. HMM is used 

to represent probability distribution over sequence of 

observations In simpler Markov models (like a 

Markov chain), the state is directly visible to the 

observer, and therefore the state transition 

probabilities are the only parameters, while in the 

hidden Markov model, the state is not directly 

visible, but the output, dependent on the state, is 

visible. Each state has a probability distribution over 

the possible output tokens. Therefore, the sequence of 

tokens generated by an HMM gives some 

information about the sequence of states In its 

discrete form, a hidden Markov process can be 

visualized as a generalization of the Urn problem 

with replacement (where each item from the urn is 

returned to the original urn before the next step). 

Consider this example: in a room that is not visible to 

an observer there is a genie. The room contains urns 

X1, X2, X3, … each of which contains a known mix 

of balls, each ball labeled y1, y2, y3, …. The genie 

chooses an urn in that room and randomly draws a 

ball from that urn. It then puts the ball onto a 

conveyor belt, where the observer can observe the 

sequence of the balls but not the sequence of urns 

from which they were drawn. The genie has some 

procedure to choose urns; the choice of the urn for 

the n-th ball depends only upon a random number 

and the choice of the urn for the (n − 1)-th ball. The 

choice of urn does not directly depend on the urns 

chosen before this single previous urn; therefore, this 

is called a Markov process. It can be described by the 

upper part of Figure 4. 

 

Figure 4. Probabilistic parameters of a hidden 

Markov model  

 

where, 

X — states 

y — possible observations 

a — state transition probabilities  

b — output probabilities  

 

The Markov process itself cannot be observed, only 

the sequence of labeled balls, thus this arrangement is 

called a "hidden Markov process". This is illustrated 

by the lower part of the diagram shown in Figure 1, 

where one can see that balls y1, y2, y3, y4 can be 

drawn at each state. Even if the observer knows the 

composition of the urns and has just observed a 

sequence of three balls, e.g. y1, y2 and y3 on the 

conveyor belt, the observer still cannot be sure which 

urn (i.e., at which state) the genie has drawn the third 

ball from. However, the observer can work out other 

information, such as the likelihood that the third ball 

came from each of the urns. 

The Probability of all the states is computed as 
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IV FEATURES 

1. Predicting User Task 

Predicting User Tasks is one of the features of our 

project which is aimed at predicting the next task of 

the user based on his previous history at a given time. 

Prediction of user tasks will be done by using ANN. 

The ANN is trained with one parameter that will be 

the task id of the task executed by the user and the 

output will be the time that the task was executed on 

this is achieved by using regression. The model of the 

ANN will be trained using Stochas tic gradient 

descent in which the gradient of the model is 

approximated using a single example i.e. the values 

of the weights of the ANN will change with every 

task this will help in ensuring that the model is up-to-

date with the users pattern and can adapt in future if 

there is any change in users pattern. The Tasks 

performed by the user each of them is given a unique 

task id that is used for training along with the time in 

seconds that it was executed at.  

             ɯ := ɯ - ƞ∆Q(ɯ) 

As the algorithm sweeps through the training set, it 

performs the above update for each training example. 

Several passes can be made over the training set until 

the algorithm converges. If this is done, the data can 

be shuffled for each pass to prevent cycles. Typical 

implementations may use an adaptive learning rate so 

that the algorithm converges. A compromise between  

computing the true gradient and the gradient at a 

single example is to compute the gradient against 

more than one training example (called a "mini-

batch") at each step. This can perform significantly 

better than "true" stochastic gradient descent 

described, because the code can make use of 

vectorization libraries rather than computing each 

step separately. It may also result in smoother 

convergence, as the gradient computed at each step 

uses more training examples. 

 

2. Web-Crawling 

For keeping the user up-to-date on his favourite 

topics we have deployed web-crawlers or web bots 

which will browse the World Wide Web in a 

methodical, automated way to get the things which 

interests the user based on the user settings. Web 

Crawlers are mainly used to make a copy of the web 

pages they visit and index them for later use and fast 

searching. The Web crawlers used in our project will 

mainly visit the social networking sites, google, blogs 

and other public sites on the internet with appropriate 

permissions.   
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A Web crawler starts with a list of URLs to visit, 

called the seeds. As the crawler visits these URLs, it 

identifies all the hyperlinks in the page and adds them 

to the list of URLs to visit, called the crawl frontier. 

URLs from the frontier are recursively visited 

according to a set of policies. If the crawler is 

performing archiving of websites it copies and saves 

the information as it goes. The archives are usually 

stored in such a way they can be viewed, read and 

navigated as they were on the live web, but are 

preserved as ‗snapshots'. 

The archive is known as the repository and is 

designed to store and manage the collection of web 

pages. The repository only stores HTML pages and 

these pages are stored as distinct files. A repository is 

similar to any other system that stores data, like a 

modern day database. The only difference is that a 

repository does not need all the functionality offered 

by a database system. The repository stores the most 

recent version of the web page retrieved by the 

crawler. 

The large volume implies the crawler can only 

download a limited number of the Web pages within 

a given time, so it needs to prioritize downloads. The 

high rate of change can imply the pages might have 

already been updated or even deleted. 

 

3. Networking 

The Assistants will be able to communicate between 

each other to request data or send data only with the 

consent of both the parties. For the connections 

between the two users sockets will be used along 

with the username of the user to check if the request 

or data is being sent to the intended recipient. 

 

 
A network socket is an internal endpoint for sending 

or receiving data within a node on a computer 

network. it is a representation of this endpoint in 

networking software (protocol stack), such as an 

entry in a table (listing communication protocol, 

destination, status, etc.), and is a form of system 

resource. In practice "socket" usually refers to a 

socket in an Internet Protocol (IP) network (where 

sockets may be called Internet sockets), in particular 

for the Transmission Control Protocol(TCP), which is 

a protocol for one-to-one connections. In this context, 

sockets are assumed to be associated with a specific 

socket address, namely the IP address and a port 

number for the local node, and there is a 

corresponding socket address at the foreign node 

(other node), which itself has an associated socket, 

used by the foreign process. Associating a socket 

with a socket address is called binding. 

 

V  CONCLUSION 

 

In this paper we presented the idea of gathering user 

interest by means of tags and provide them with the 

relevant content. We have proposed our approach of 

enriching the social user profile by analyzing the 

social behaviour and especially by analyzing the 

metadata of the resources, the tags assigned to the 

resources and the user‘s neighbour. Moreover, our 

approach takes into consideration the temporal aspect 

in order to capture the new information over time. 

The combination of the three information is in our 

opinion, a powerful and promising approach to 

provide flexible enrichment in an evolutionary 

environment. The enrichment of the profile could be 

used for further purposes such as recommendation, 

customization since it provides an information which 
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reflects the user‘s interests in every period of time. 

The first conclusions that emerge from evaluation of 

relevance tests are that the integration of different 

social contexts provides very conclusive results and 

that the integration of several social factors makes the 

search results more relevant. There are others social 

context related information which can be used 

concerning users, such as trust friendships and 

colleagues relationships, and concerning a resource, 

such as its location and the situation in which it has 

been produced We justified that user-generated tags 

are effective to represent user interests because these 

tags reflect human being‘s judgments while more 

concise and closer to human understanding. So the 

consensus among users for the content of a given web 

page can be reached more likely via tags than via 

keywords. 
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