
© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146391 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 479

AI Based Assistant with Speech Recognition

Parag Chaudhari
1
, Yash Patil

2
, Srikar Nakka

3
, Omkar Pawaskar

4

Department of Computer Engineering, Sinhgad Institute of Technology , Maharashtra, India

Abstract- Autonomous robotic systems and intelligent

artificial agent’s capability have advanced dramatically.

Voice-based digital Assistants such as Apple’s S iri and

Google’s Now are currently booming. Artificial

Intelligence is being used in management fields like

assistance and monitoring, since a machine has become

capable of learning simple activities of humans. PDAs

are built to help the user get things done (e.g., setting up

an alarm/reminder/meeting, taking notes, creating lists)

and provide easy access to personal/external structured

data, web services, and applications. In this paper we

use AI and its computing capabilities to build a personal

assistant application to help user in accomplishing its

task and make him productive in his routine .Speech

recognition as the man machine interface plays an

important role in the field of AI, since it’s a hand free

option to give instructions to a machine. In this paper

we use Hidden Markov Model to illustrate how speech

recognition actually happens. We also explain use of

neural network which is used to give learning capability

to our assistant. We intend to build a personal

assistant agent capable to discover the user’s habits,

abilities, preferences, and goals, even more accurately

anticipating the user’s intentions.

Index Terms- Artificial Intelligence, Personal Assistant,

Neural Network, Speech Recognition, Hidden Markov

Model.

I. INTRODUCTION

There has been as significant increase in the use of

personal assistants in managing user task and

activities. As the need and expectation to do more

grew, despite improvements, a limited natural user

interface has remained as one of the major

bottlenecks in interacting with these devices. PDAs

(also known as virtual assistants) precisely target this

problem and have the promise of enhancing a user‘s

productivity by either proactively providing the

information the user needs in the right context (i.e.,

time and place) or reactively answering a user‘s

questions and completing tasks through natural

language. Tasks can be related to device

functionality, applications, or web services. Over the

last 20 years, researchers have investigated

personalized virtual assistant agents targeting specific

domains, including tourism, elder care, device

control, and home and office applications. However,

attempts at bringing them to market earlier have

failed because of their limited utility. Over the past

five years, there has been tremendous investment in

PDA technology by both small and big technology

companies. Siri, Google Now Cortana and Alexa are

the major personal assistants

In the market today, and they provide proactive

and/or reactive assistance to the user. Proactive

assistance refers to the agent taking an action to assist

the user without the users

Explicit request. Reactive assistance refers to the

agent responding to the user‘s voice or typed

command to assist him or her. The number of

smartphone users using PDAs increased from 30% in

2013 to 65% in 2015 indicating increased adoption.

Personal Assistants have become a key capability in

most smartphones. They are now also deployed in

tablets, laptops, desktop PCs, and headless devices

and some are also even integrated into operating

systems. These agents are designed to be personal,

they know their user‘s profile, whereabouts,

schedules, and so forth. They can proactively start

interactions with their user through notifications and

system initiated questions or reactively respond to

user requests. User– PDA interactions typically take

place via natural language, where the user speaks to

the agent as if he or she were speaking to a real

human assistant.

A personal assistant is a Meta layer of intelligence

that sits on top of other services and applications and

performs actions using these services and

applications to fulfill the user‘s intent. A user‘s intent

could be explicit, where the user commands the

system to perform an action, or it could be inferred,

where the agent notifies or makes suggestions upon

evaluation of one or more triggering conditions it has

been tracking. Personal assistants are built to help the

user get things done (e.g., setting up an

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146391 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 480

alarm/reminder/meeting, taking notes, creating lists)

and provide easy access to personal/external

structured data, web services, and applications (e.g.,

finding the user‘s documents, locating a place,

making reservations, playing music). They also assist

the user in his or her daily schedule and routine by

serving notifications and alerts based on contextual

information, such as time, user location, and

feeds/information produced by various web services,

given the user‘s interests (e.g., commute alerts

to/from work, meeting reminders, concert

suggestions). Collectively, these functionalities are

expected to make the user more productive in

managing his or her work and personal life. In this

paper we describe a simple architecture of a personal

assistant and a neural network to embed learning

capability into the assistant. We also describe Hidden

Markov Model to illustrate speech recognition

application.

 II. PERSONAL ASSISTANT MODEL

Our common understanding of a personal assistant is

that of a person (or an agent) who is able to provide

distinct help at a given time and in a given activity

context. An important characteristic of personal

assistants is that they adapt to the distinct demands of

their ‗master‘ and furthermore (over time)

progressively pay attention to her/his personal

preferences and routines. Also, as by their definition,

personal assistants should each be helping only one

person, making this one-to-one relationship between

assistant and ‗master‘ a crucial benefit. Hence, when

we try to approach this subject from a more technical

perspective, we already find a set of requirements and

expectations coming from users. Among the most

requested features when thinking of digital assistants,

are simplicity, flexibility and easiness of interaction.

Voice-based input/output interfaces may be the

easiest way to fulfill these requirements. The

scenarios that the PDAs support can be divided into

two main categories: 1) proactive and 2) reactive

assistance. The conceptual agent architecture

designed to support these two modes of assistance is

shown in Figure .The system architecture depicts

proactive and reactive user experiences, data, and

service end points. Reactive assistance is shown in

where the user issues an explicit natural language

command (e.g., ―book me a taxi‖) to the agent. The

user request is handled through a set of reactive

assistance components, such as speech recognition,

LU, and DM. The data coming from various back

ends, and applications are served to the user

according to the constraints specified in the natural

language query. The experience (reactive and/or

proactive) can be served in one or more of the

different device or service end points. Proactive

assistance involves anticipatory computing, where

the personal digital agent does things in a contextual

manner (i.e., at the right time and place) that it

expects is valuable to the user without an explicit

user request. Proactive assistance makes use of

inference, user modeling, and ranking to power

experiences. Backend data, device, applications, and

web services signals are leveraged for proactive

inference and triggering. Even though proactive and

reactive parts of the current PDA architectures are

built in isolation, in principle they can use a single

architecture to enable both types of experiences. In

fact, most proactive scenarios have reactive

extensions and vice versa. For example, if the user

makes a restaurant reservation (reactively), the agent

may (proactively) suggest a movie after the dinner or

may offer to book a cab to take the user to the

restaurant. Data and context are shared between the

two assistance modes. Next, we focus on the

proactive system architecture and the components

that power proactive scenarios. Proactive assistance

is based on the theory of proactivity that describes

user desires and a model of helpfulness .The goal is

to provide assistance to automate tasks or further the

user‘s interests for things he or she cares about, all

within context, without explicit user request.

Figure 1. Architecture of Assistant

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146391 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 481

To achieve that, the agent is designed to possess a set

of attributes; it should be valuable in that it advances

the user‘s interests and tasks, while not interfering

with the user‘s own activities or attention unless it

has the user‘s explicit approval. It should be

unimposing. The agent should be transparent in what

it knows about the user. It should be anticipatory and

know the future needs of the user and bring

opportunities to the surface. The agent should also

continuously learn and refine its decisions from the

feedback signals it receives regarding the actions it

takes. These principles put the user at the center, and

the agent‘s actions are considered valuable only if

they ultimately add value for the user. Proactive

assistance operates on the proactivity continuum,

which ranges from zero to full automation, allowing

for the following scenarios:

I) Do it yourself (no help from the agent)

II) User tells the agent what to pay attention to

(notifications/alerts)

III) Agent infers user‘s habits/patterns and

makes suggestions(inference/suggestions)

IV) Agent makes decisions and takes actions

(full autonomy on task decisions/executions).

Most of the currently supported proactive scenarios

are notifications/alerts and suggestions. Even though

there is some preliminary work, none of the agents in

production supports autonomous decision making

and action taking on behalf of the user without

confirmation.

 III. Artificial Neural Network

Artificial Neural Network is a supervised machine

learning concept which is a type of connectionist

computer system inspired by the biological neural

networks that constitutes the animal brains. An

Artifical Neural Network is a collection of nodes

called Artificial Neurons (analogous to neurons

present in brains). Each connection (Synapse)

between neurons can transmit data in forward

direction, the connections are weighted i.e. while

transferring data the cost is multiplied to the data.

Each node or neuron has computational property

which computes all the input it receives to deliver an

output. In common ANN implementations, the

synapse signal is a real number, and the output of

each neuron is calculated by a Non-linear function of

the sum of its inputs. Neurons and synapses typically

adjusts their weights as learning proceeds. The

weight increases or decreases the strength of the

signal that it sends across the synapse. Neurons may

have a threshold such that only if the aggregate signal

crosses that threshold is the signal sent. Typically,

neurons are organized in layers. Different layers may

perform different kinds of transformations on their

inputs. Signals travel from the first (input), to the last

(output) layer, possibly after traversing the layers

multiple times. In general the layers are divided into

three parts the first is the Input Layer which contains

all the input elements, second layer is called Hidden

Layer, this layer may contain multiple layers

depending on the complexity of the problem or the

architecture of the system, the final or third layer is

the Output Layer which represents the output of the

system. The input layer has exactly the same number

of nodes as the number of attributes present in the

input. The number of nodes present in hidden layer

and output layer depends on the architecture of

system and the required format of the output. An

example of Neural Network is given below in Figure

2.

Figure 2. Representation of Artificial Neural Network

As shown in figure every node in a layer is connected

to every other node in the next layer. The Weights of

the Synapse are the important parameters which are

calculated by repeated use of the training data during

the training period. The training of the ANN‘s is

carried out in two phases which are Forward

propagation and Back propagation.

The Forward propagation is used to calculate the

output of the system given the input elements. The

Neuron computes the inputs by multiplying all of its

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146391 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 482

inputs with the weights of their respective Synapses

and then adding the result of all of them.

 Figure 3. Forward Propagation of one Neuron

For the Neuron in Figure 3 the forward propagation

or its output h(x) will be calculated as

 z = ∑ xi*wi (1)

 ℎө(x) = S(z) (2)

where,

 xi = input element.

 wi = weight of Synapse connecting the nodes

 S(z) = Sigmoid function

The BackPropagation is the phase where the output

of the system is compared with the actual output

provided in the training set. Backpropagation

distributes the error term back up through the layers,

by modifying the weights at each node.

 IV. HIDDEN MARKOV MODEL

Hidden Markov model (HMM) is a tool for

modelling time series data. They are used in almost

all current speech recognition systems. HMM is used

to represent probability distribution over sequence of

observations In simpler Markov models (like a

Markov chain), the state is directly visible to the

observer, and therefore the state transition

probabilities are the only parameters, while in the

hidden Markov model, the state is not directly

visible, but the output, dependent on the state, is

visible. Each state has a probability distribution over

the possible output tokens. Therefore, the sequence of

tokens generated by an HMM gives some

information about the sequence of states In its

discrete form, a hidden Markov process can be

visualized as a generalization of the Urn problem

with replacement (where each item from the urn is

returned to the original urn before the next step).

Consider this example: in a room that is not visible to

an observer there is a genie. The room contains urns

X1, X2, X3, … each of which contains a known mix

of balls, each ball labeled y1, y2, y3, …. The genie

chooses an urn in that room and randomly draws a

ball from that urn. It then puts the ball onto a

conveyor belt, where the observer can observe the

sequence of the balls but not the sequence of urns

from which they were drawn. The genie has some

procedure to choose urns; the choice of the urn for

the n-th ball depends only upon a random number

and the choice of the urn for the (n − 1)-th ball. The

choice of urn does not directly depend on the urns

chosen before this single previous urn; therefore, this

is called a Markov process. It can be described by the

upper part of Figure 4.

Figure 4. Probabilistic parameters of a hidden

Markov model

where,

X — states

y — possible observations

a — state transition probabilities

b — output probabilities

The Markov process itself cannot be observed, only

the sequence of labeled balls, thus this arrangement is

called a "hidden Markov process". This is illustrated

by the lower part of the diagram shown in Figure 1,

where one can see that balls y1, y2, y3, y4 can be

drawn at each state. Even if the observer knows the

composition of the urns and has just observed a

sequence of three balls, e.g. y1, y2 and y3 on the

conveyor belt, the observer still cannot be sure which

urn (i.e., at which state) the genie has drawn the third

ball from. However, the observer can work out other

information, such as the likelihood that the third ball

came from each of the urns.

The Probability of all the states is computed as

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146391 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 483

IV FEATURES

1. Predicting User Task

Predicting User Tasks is one of the features of our

project which is aimed at predicting the next task of

the user based on his previous history at a given time.

Prediction of user tasks will be done by using ANN.

The ANN is trained with one parameter that will be

the task id of the task executed by the user and the

output will be the time that the task was executed on

this is achieved by using regression. The model of the

ANN will be trained using Stochas tic gradient

descent in which the gradient of the model is

approximated using a single example i.e. the values

of the weights of the ANN will change with every

task this will help in ensuring that the model is up-to-

date with the users pattern and can adapt in future if

there is any change in users pattern. The Tasks

performed by the user each of them is given a unique

task id that is used for training along with the time in

seconds that it was executed at.

 ɯ := ɯ - ƞ∆Q(ɯ)

As the algorithm sweeps through the training set, it

performs the above update for each training example.

Several passes can be made over the training set until

the algorithm converges. If this is done, the data can

be shuffled for each pass to prevent cycles. Typical

implementations may use an adaptive learning rate so

that the algorithm converges. A compromise between

computing the true gradient and the gradient at a

single example is to compute the gradient against

more than one training example (called a "mini-

batch") at each step. This can perform significantly

better than "true" stochastic gradient descent

described, because the code can make use of

vectorization libraries rather than computing each

step separately. It may also result in smoother

convergence, as the gradient computed at each step

uses more training examples.

2. Web-Crawling

For keeping the user up-to-date on his favourite

topics we have deployed web-crawlers or web bots

which will browse the World Wide Web in a

methodical, automated way to get the things which

interests the user based on the user settings. Web

Crawlers are mainly used to make a copy of the web

pages they visit and index them for later use and fast

searching. The Web crawlers used in our project will

mainly visit the social networking sites, google, blogs

and other public sites on the internet with appropriate

permissions.

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146391 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 484

A Web crawler starts with a list of URLs to visit,

called the seeds. As the crawler visits these URLs, it

identifies all the hyperlinks in the page and adds them

to the list of URLs to visit, called the crawl frontier.

URLs from the frontier are recursively visited

according to a set of policies. If the crawler is

performing archiving of websites it copies and saves

the information as it goes. The archives are usually

stored in such a way they can be viewed, read and

navigated as they were on the live web, but are

preserved as ‗snapshots'.

The archive is known as the repository and is

designed to store and manage the collection of web

pages. The repository only stores HTML pages and

these pages are stored as distinct files. A repository is

similar to any other system that stores data, like a

modern day database. The only difference is that a

repository does not need all the functionality offered

by a database system. The repository stores the most

recent version of the web page retrieved by the

crawler.

The large volume implies the crawler can only

download a limited number of the Web pages within

a given time, so it needs to prioritize downloads. The

high rate of change can imply the pages might have

already been updated or even deleted.

3. Networking

The Assistants will be able to communicate between

each other to request data or send data only with the

consent of both the parties. For the connections

between the two users sockets will be used along

with the username of the user to check if the request

or data is being sent to the intended recipient.

A network socket is an internal endpoint for sending

or receiving data within a node on a computer

network. it is a representation of this endpoint in

networking software (protocol stack), such as an

entry in a table (listing communication protocol,

destination, status, etc.), and is a form of system

resource. In practice "socket" usually refers to a

socket in an Internet Protocol (IP) network (where

sockets may be called Internet sockets), in particular

for the Transmission Control Protocol(TCP), which is

a protocol for one-to-one connections. In this context,

sockets are assumed to be associated with a specific

socket address, namely the IP address and a port

number for the local node, and there is a

corresponding socket address at the foreign node

(other node), which itself has an associated socket,

used by the foreign process. Associating a socket

with a socket address is called binding.

V CONCLUSION

In this paper we presented the idea of gathering user

interest by means of tags and provide them with the

relevant content. We have proposed our approach of

enriching the social user profile by analyzing the

social behaviour and especially by analyzing the

metadata of the resources, the tags assigned to the

resources and the user‘s neighbour. Moreover, our

approach takes into consideration the temporal aspect

in order to capture the new information over time.

The combination of the three information is in our

opinion, a powerful and promising approach to

provide flexible enrichment in an evolutionary

environment. The enrichment of the profile could be

used for further purposes such as recommendation,

customization since it provides an information which

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146391 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 485

reflects the user‘s interests in every period of time.

The first conclusions that emerge from evaluation of

relevance tests are that the integration of different

social contexts provides very conclusive results and

that the integration of several social factors makes the

search results more relevant. There are others social

context related information which can be used

concerning users, such as trust friendships and

colleagues relationships, and concerning a resource,

such as its location and the situation in which it has

been produced We justified that user-generated tags

are effective to represent user interests because these

tags reflect human being‘s judgments while more

concise and closer to human understanding. So the

consensus among users for the content of a given web

page can be reached more likely via tags than via

keywords.

REFERENCES

[1] M.Bender ,T. Crecelius , M Kacimi ,‖Exploiting

Social Relations for query expansion and result

ranking ―, in ICDE Workshops 2015 ,IEEE

[2] I, Levenshtein, ―Tag Based Social Interest

Discovery,‖2014.

[3] H. Halpin, V. Robu, and H. Shepherd, ―Dynamic

Enrichment of Social Users Profile‖ in Proc.

16th Int. Conf. WWW, 2015, pp. 211–220.

[4] M. Lipczak, ‖ Building a social network, based

on collaborative tagging, to enhance social

information retrieval‖, Doctoral thesis, May

2014. Dalhousie University Halifax, Nova

Scotia.

[5] C. Cattuto, V. Loreto and L. Pietronero,

―Predicting User Interests from Contextual

Information‖ CoRR, May 2016.

