IFgsr-closed sets in Intuitionistic Fuzzy Topological Spaces

Anitha S¹, Mohana K²

¹Research scholar, Department of Mathematics, Nirmala College for Women ²Assistant Professor, Department of Mathematics, Nirmala College for Women

Abstract- In this paper, a new class of sets, called Intuitionistic fuzzy gsr-closed sets and Intuitionistic fuzzy gsr-open sets are introduced and some of its properties were studied.

Index Terms- Intuitionistic fuzzy topology, Intuitionistic fuzzy gsr-closed sets, Intuitionistic fuzzy gsr-open sets.

1. INTRODUCTION

The fuzzy concept was introduced by Zadeh [14] in 1965 and the theory of fuzzy topology was introduced and developed by C.L. Chang [2]. Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets.

S.S.Thakur and Rekka Chaturvedi [11] introduced and investigated the notions of RG-Closed sets in intuitionistic fuzzy topological spaces. Many fuzzy topological concepts such as semi closed, α closed, semi pre closed have been generalized for intuitionistic fuzzy topological spaces.

In this paper, we introduce the concepts of intuitionistic fuzzy gsr-closed sets, intuitionistic fuzzy gsr-open sets. The relation between intuitionistic fuzzy gsr-closed sets and other generalization of intuitionistic fuzzy closed sets are discussed.

2. PRELIMINARIES

Definition 2.1. [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{< x, \mu_A(x), \nu_A(x) > / x \in X\}$ where the functions $\mu_A(x) : X \to [0,1]$ and $\nu_A(x) : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy set in X.

- A \subseteq B if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- A = B if and only if $A \subseteq B$ and $B \subseteq A$
- $A^{c} = \{ \langle x, v_{A}(x), \mu_{A}(x) \rangle | x \in X \}$
- $\bullet \quad A \ \cap \ B = \{ < x, \ \mu_A(x) \land \ \mu_B(x), \ \nu_A(x) \lor \ \nu_B(x) > / \ x \\ \in X \}$
- A U B = {< x, $\mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu B(x) > / x \in X$ }

For the sake of simplicity, Let us use the notation A = <x, μ_A , ν_A > instead of A = {< x, $\mu_A(x)$, $\nu_A(x) > / x \in X$ }. Also for the sake of simplicity, we shall use the notation A = < x, (μ_A , μ_B) , (ν_A , ν_B)> instead of A = <x, (A/μ_A , B/μ_B) , ($A/(\nu_A, B/\nu_B)$ >.

The intuitionistic fuzzy sets $0 \sim = \{ < x, 0, 1 > / x \in X \}$ and $1 \sim = \{ < x, 1, 0 > / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3. [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

- 0~, 1~ ∈ τ
- $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$
- $\cup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X,τ) is called an intuitionistic fuzzy topological space(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set(IFOS in short) in X.

The complement (A^c) of an IFOS A in an IFTS(X, τ) is called an intuitionistic fuzzy closed set(IFCS in short) in X.

Definition 2.4. [3] Let (X,τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

- $int(A) = \bigcup \{G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A \},$
- $cl(A) = \cap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Proposition 2.5. [3] For any IFSs A and B in (X,τ) , we have

- (1) $int(A) \subseteq A$,
- (2) $A \subseteq cl(A)$,
- (3) A is an IFCS in $X \Leftrightarrow cl(A) = A$,
- (4) A is an IFOS in $X \Leftrightarrow int(A) = A$,
- (5) $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ and $cl(A) \subseteq cl(B)$,
- (6) int(int(A)) = int(A),
- (7) cl(cl(A)) = cl(A),
- (8) $cl(A \cup B) = cl(A) \cup cl(B)$,
- (9) $int(A \cap B) = int(A) \cap int(B)$.

Proposition 2.6. [3] For any IFS A in (X,τ) , we have (1) int $(0\sim) = 0\sim$ and $cl(0\sim) = 0\sim$, (2) int $(1\sim) = 1\sim$ and $cl(1\sim) = 1\sim$, (3) $(int(A))^{c} = cl(A^{c})$, (4) $(cl(A))^{c} = int(A^{c})$

Proposition 2.7. [3] If A is an IFCS in (X,τ) then cl(A) = A and if A is an IFOS in (X,τ) then int(A) = A. The arbitrary union of IFCSs is an IFCS in (X,τ) . Definition 2.8. [8] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X,τ) is said to be an (i) intuitionistic fuzzy regular open set(IFROS in

short) if A = int(cl(A)),

(ii) intuitionistic fuzzy regular closed set(IFRCS in short) if A = cl(int(A)),

(iii) intuitionistic fuzzy semi open set(IFSOS in short) if $A \subseteq cl(int(A))$,

(iv) intuitionistic fuzzy semi closed set(IFSCS in short) if $int(cl(A)) \subseteq A$,

(v) intuitionistic fuzzy pre-open set(IFPOS in short) if $A \subseteq int(cl(A))$,

(vi) intuitionistic fuzzy pre-closed set(IFPCS in short) if $cl(int(A)) \subseteq A$,

(vii) intuitionistic fuzzy α - open set(IF α OS in short) if A \subseteq int(cl(int(A)),

(viii) intuitionistic fuzzy α -closed set(IF α CS in short) if cl(int(cl(A)) \subseteq A.

Definition 2.9. [8] Let an IFS A of an IFTS (X,τ) .

Then the semi closure of A (scl(A) in short) is defined as $scl(A) = \cap \{K \mid K \text{ is an IFSCS in } X \text{ and } A \subseteq K\}.$

Then the semi interior of A (sint(A) in short) is defined as $sint(A) = \bigcup \{G \mid G \text{ is an IFSOS in X and } G \subseteq A\}$

Result 2.10. [8] Let A be an IFS in (X,τ) , then (i) $scl(A) = A \cup int(cl(A))$ (ii) $sint(A) = A \cap cl(int(A))$ Definition 2.11. An IFS A in an IFTS (X,τ) is said to an (i) intuitionistic fuzzy generalized closed (IFGCS) [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X, (ii) intuitionistic fuzzy regular generalized closed (IFRGCS) [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFROS in X, (iii) intuitionistic fuzzy α - generalized closed (IF α GCS) [6] if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X, (iv) intuitionistic fuzzy generalized α - closed (IFG α CS) [10] if α cl(A) \subseteq U whenever A \subseteq U and U is an IF α OS in X, (v) intuitionistic fuzzy generalized pre - closed

(v) intuitionistic fuzzy generalized pre - closed (IFGPCS) [7] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X,

3. INTUITIONISTIC FUZZY GSR-CLOSED SETS

Definition 3.1. An IFS A in an IFTS (X,τ) is said to be an Intuitionistic fuzzy gsr-closed sets (IFGSRCS in short) if scl(A) \subseteq U and U is an IFROS in (X, τ) . Example 3.2. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X,τ) , where G = < x, (0.3,0.4), (0.7,0.5)>.Then the IFS A = <x, (0.3,0.5),(0.6,0.4)>

Theorem 3.3. Every IFCS is an IFGSRCS but not conversely.

is an IFGSRCS in (X,τ) .

Proof: Let $A \subseteq U$ and U is an IFROS in (X,τ) . Let A be an IFCS in X. Since $scl(A) \subseteq cl(A)$ and A is a IFCS in (X,τ) , $scl(A) \subseteq cl(A) = A \subseteq U$. Therefore A is an IFGSRCS in X.

Example 3.4. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.1,0.3), (0.6,0.5)>. Then the IFS A = <x, (0.5,0.4),(0.2,0.3)> is an IFGSRCS but not IFCS in (X, τ).

Theorem 3.5. Every IFGCS is an IFGSRCS but not conversely.

Proof: Let $A \subseteq U$ and U is an IFROS in (X,τ) . Let A be an IFGCS in (X,τ) . Since every IFROS is an IFOS and scl(A) \subseteq cl(A), we have by hypothesis, scl(A) \subseteq cl(A) \subseteq U and hence A is an IFGSRCS.

Example 3.6. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.3,0.2), (0.7,0.8)>. Then the IFS A = <x, (0.3,0.2),(0.7,0.8)> is an IFGSRCS but not IFGCS in (X, τ).

Theorem 3.7. Every IFRGCS is an IFGSRCS but not conversely.

Proof: Let $A \subseteq U$ where U is an IFROS in (X,τ) . Let A be an IFRGCS in (X,τ) . Since $scl(A) \subseteq cl(A)$, we have by hypothesis, $scl(A) \subseteq cl(A) \subseteq U$ and hence A is an IFGSRCS.

Example 3.8. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.3,0.2), (0.7,0.8)>. Then the IFS A = <x, (0.3,0.2),(0.7,0.8)> is an IFGSRCS, but not an IFRGCS (X, τ).

Theorem 3.9. Every IF α CS is an IFGSRCS but not conversely.

Proof: Let $A \subseteq U$ where U is an IFROS in (X,τ) and Let A be an IF α CS in (X,τ) . Since every α -closed set is semi-closed and scl $(A) \subseteq \alpha$ cl $(A) \subseteq U$. Thus A is an IFGSRCS.

Example 3.10. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.1,0.3), (0.6,0.5)> Then the IFS A = <x, (0.5,0.4),(0.2,0.3)> is an IFGSRCS but not IF α CS in (X, τ).

Theorem 3.11. Every IFG α CS is an IFGSRCS but not conversely.

Proof: Let A be an IFG α CS in (X, τ) and let A \subseteq U and U be an IFROs in (X, τ). Since every IFROS is an IF α OS and by hypothesis, we have scl(A) $\subseteq \alpha$ cl(A) \subseteq U. Therefore A is an IFGSRCS.

Example 3.12. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.3,0.4), (0.7,0.5)>. Then the IFS A = <x, (0.3,0.5),(0.6,0.4)> is an IFGSRCS but not IFG α CS in (X, τ).

Theorem 3.13. Every IF α GCS is an IFGSRCS but not conversely.

Proof: Let $A \subseteq U$ and U be an IFROS in (X,τ) . Since every IFROS is an IFOS and A is IF α GCS, we have scl(A) $\subseteq \alpha$ cl(A) \subseteq U. Hence A is an IFGSRCS. Example 3.14. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.3,0.4), (0.7,0.5)>. Then the IFS A = <x, (0.3,0.5),(0.6,0.4)> is an IFGSRCS but not IF α GCS in (X, τ).

Remark 3.15. The following examples show that IFGSRCS is independent of IFPCS, IFGPCS.

Example 3.16. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.2,0.3), (0.7,0.6)> Then IFS A = <x, (0.6,0.5), (0.3,0.4)> is an IFGSRCS but not IFPCS and IFGPCS.

Example 3.17. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.5,0.4), (0.5,0.6)> Then the IFS A = <x, (0.4,0.2),(0.6,0.7)> is an IFPCS and IFGPCS but not an IFGSRCS in (X, τ).

The following implications are true, none of them is reversible.

In this diagram by " $A \rightarrow B$ " means A implies B but not conversely and " $A \leftarrow / \rightarrow B$ " means A and B are independent of each other.

Theorem 3.18. Let (X,τ) be an IFTS. Then for every $A \in IFGSRCS$ and for every $B \in IFS$ in an IFTS (X,τ) , $A \subseteq B \subseteq scl(A) \Rightarrow B \in IFGSRCS$ in (X,τ) . Proof: Let $B \subseteq U$ and U be an IFROS. Since $A \subseteq B$, $A \subseteq U$ and A is an IFGSRCS, $scl(A) \subseteq U$, whenerver $A \subseteq U$, By hypothesis, $B \subseteq scl(A)$, $scl(B) \subseteq scl(scl(A)) = scl(A) \subseteq U$. Therefore B is an IFGSRCS in (X,τ) .

Theorem 3.19. If an IFS A is an IFRGCS such that A \subseteq B \subseteq cl(A), where B is an IFS in an IFTS (X, τ), then B is an IFGSRCS in (X, τ).

Proof: Let $B \subseteq U$ and U be an IFROS. Then $A \subseteq U$. Since A is an IFRGCS and $scl(A) \subseteq cl(A)$, we have $scl(A) \subseteq cl(A) \subseteq U$. Now, $scl(B) \subseteq cl(B) \subseteq cl(A) \subseteq U$. Thus B is an IFGSRCS in (X,τ) .

4.INTUITIONISTIC FUZZY GSR-OPEN SETS

Definition 4.1. An IFS A is said to be an intuitionistic fuzzy gsr-open set (IFGSROS in short) in (X,τ) if the complement A^c is an IFGSRCS in (X,τ)

Example 4.2. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.3,0.4), (0.7,0.5)>.Then the IFS A = <x, (0.6,0.4), (0.3,0.5)> is an IFGSROS in (X, τ).

Theorem 4.3. Every IFOS, IFGOS, IFRGOS, IF α OS, IF α OS, IF α GOS is an IFGSROS in (X, τ). But the converse are not true in general. Proof: Straight forward.

Example 4.4. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on X, where G = < x, (0.1,0.3), (0.6,0.5)> Then the IFS A = <x, (0.2,0.3), (0.5,0.4)>is an IFGSROS but not IFOS, IF α OS in (X, τ).

Example 4.5. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on X, where G = < x, (0.3,0.2), (0.7,0.8)>. Then the IFS A = <x, (0.7,0.8), (0.3,0.2)> is an IFGSROS but not an IFGOS, IFRGOS in (X, τ).

Example 4.6. Let X={a,b} and $\tau = \{0\sim,G,1\sim\}$ be an IFTS on (X, τ), where G = < x, (0.3,0.4), (0.7,0.5)>. Then the IFS A = A = <x, (0.6,0.4), (0.3,0.5)> is an IFGSROS but not IFG α OS, IF α GOS in (X, τ).

Theorem 4.7. Let (X,τ) be an IFTS. If $A \in$ IFGSRO(X) then $V \subseteq cl(int(A))$ whenever $V \subseteq A$ and V is IFRCS in (X,τ) .

Proof: Let us assume that $A \in IFGSRO(X)$. Then A^c is an IFGSRCS in (X,τ) . Therefore $scl(A^c) \subseteq U$ whenever $A^c \subseteq U$ and U is an IFROS in X. That is $int(cl(A^c)) \subseteq U$. This implies $U^c \subseteq cl(int(A))$ whenever $U^c \subseteq A$ and U^c is IFRCS in X. Replacing U^c by V, we get $V \subseteq cl(int(A))$ whenever $V \subseteq A$ and V is IFRCS.

Theorem 4.8. Let (X,τ) be an IFTS. Then for every A \in IFGSRO(X) and for every B \in IFS(X), sint(A) \subseteq B \subseteq A which implies B \in IFGSRO(X).

Proof: By hypothesis, $A^c \subseteq B^c \subseteq (\operatorname{sint}(A))^c$. Let $B^c \subseteq U$ and U be an IFROS. Since $A^c \subseteq B^c$, $A^c \subseteq U$. But A^c is an IFGSRCS $\operatorname{scl}(A^c) \subseteq U$. Also $B^c \subseteq (\operatorname{sint}(A))^c = \operatorname{scl}(A^c)$. Therefore $\operatorname{scl}(B^c) \subseteq \operatorname{scl}(\operatorname{scl}(A^c)) = \operatorname{scl}(A^c) \subseteq U$. Hence B^c is an IFGSRCS which implies B is an IFGSRO in (X,τ)

Theorem 4.9. An IFS A of an IFTS (X,τ) is a IFGSROS if and only if $U \subseteq sint(A)$ whenever $U \subseteq A$ and U is an IFRCS.

Proof: Necessity: Suppose A is an IFCSROS in (X,τ) . Let U be an IFRCS and U \subseteq A. Then U^c is an IFROS in (X,τ) such that A^c \subseteq U^c. Since A^c is an IFGSRCS, we have scl(A^c) \subseteq U^c. Hence $(sint(A))^c \subseteq$ U^c. Therefore U \subseteq sint(A)

Sufficiency: Let A be an IFS of (X,τ) and let $U \subseteq sint(A)$ whenever U is an IFRCS. Then $A^c \subseteq U^c$ and U^c is an IFROS. By hypothesis, $(sint(A))^c \subseteq U^c$ which implies $scl(A^c) \subseteq U^c$. Therefore A^c is an IFGSRCS in (X,τ) . Hence A is an IFGSROS of (X,τ)

Corollary 4.10. An IFS A of an IFTS (X,τ) is an IFGSROS if and only if $U \subseteq cl(int(A))$ whenever U is an IFRCS and $U \subseteq A$.

Proof: Necessity: Suppose A is an IFGSROS in (X,τ) . Let U be an IFRCS and U \subseteq A. Then U^c is an IFROS in (X,τ) . Such that $A^c \subseteq U^c$. Since A^c is an IFGSRCS, we have $scl(A^c) \subseteq U^c$. Therefore $int(cl(A^c)) \subseteq U^c$. Hence $(cl(int(A))^c \subseteq U^c$ which implies $U \subseteq cl(int(A))$.

Sufficiency: Let A be an IFS of X and let $U \subseteq cl(int(A))$, whenever U is an IFRCS and $U\subseteq A$. Then $A^c \subseteq U^c$ and U^c is an IFROS in (X,τ) . By hypothesis, $(cl(int(A))^c \subseteq U^c$. Hence $(cl(int(A^c)) \subseteq U^c$, which implies $A^c \subseteq U^c$. Hence A is an IFGSROS of X.

Theorem 4.11. If an IFS A is an IFRGOS in (X,τ) such that $int(A) \subseteq B \subseteq A$, where B is an IFS in (X,τ) , then B is an IFGSROS in (X,τ)

Proof: Let A be an IFRGOS and $int(A) \subseteq B \subseteq A$. Then A^c is an IFRGCS and A^c \subseteq B^c \subseteq cl(A^c). Then B^c is an IFGSRCS in (X, τ), by Theorem 3.19. Hence B is an IFGSRCS in (X, τ)

REFERENCES

[1] Atanassov.K.T, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1986), 87-96.

- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1986), 182-190.
- [3] Coker.D, An introduction to Intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88(1997), 81-89.
- [4] H. Gurcay, D. Coker and Es. A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, The Journal of Fuzzy Mathematics, 5(1997), 365-378.
- [5] D. Jayanthi and R. Santhi, Intuitionistic fuzzy generalized semi-pre closed sets, Tripura Math. Soc. (2009) 61–72.
- [6] D. Kalamani, K. Sakthivel and C. S. Gowri, Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences,6(94)(2012), 4691- 4700.
- [7] P. Rajarajeswari and L. Senthil Kumar, "Generalised Pre-Closed Sets in Intuitionistic Fuzzy Topologicical Spaces", International Journal of Fuzzy Mathematics and Systems, Vol. 1, no. 3(2011), pp. 253-262.
- [8] Sakthivel, K., 2010, Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic Alpha Generalized Irresolute Mappings, Applied Mathematical Sciences., Vol. 4, no. 37., pp. 1831 – 1842.
- [9] R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semicontinuous mappings Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [10] R. Santhi and K. Sakthivel, Intuitionistic fuzzy alpha generalized closed sets (Accepted in Mathematics Education).
- [11] S. S. Thakur and Rekha Chaturvedi, Regular generalized closed set in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintice, Seria: Matematica, 16(2006), 257-272.
- [12] S. S. Thakur and Rekha Chaturvedi, Generalized closed set in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(3)(2008), 559-572
- [13] SYoung Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semipre open sets and Intuitionistic fuzzy semipre continuous mappings, Jour. of Appl. Math. And Computing,19(2005), 467-474.
- [14] L.A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.