On Decompositions of Continuity in Topological Spaces

P.Chandramoorthi

Lecturer(Sr.Gr)/Mathematics, Nachimuthu Polytechnic College, Pollachi - 642003

Abstract- In this paper, we obtain two decompositions of continuity via strong semi closed sets in topological spaces.

Index Terms- Decomposition, strong semi closed set.

I. INTRODUCTION AND PRELEMINARIES

A subset S of a topological space is said to be regular open in X if S = int(cl(S))

1.1. Definition

A subset S of X is called

- a) Strong semiclosed set in X if $S = A \cap F$, where A is regular open and F is closed in X,
- b) Generalized closed (g-closed), if $cl(S) \subseteq G$ whenever $S \subseteq G$ whenever $S \subseteq G$ and G is regular open in X,
- c) Generalized continuos (g-continuous) if f⁻¹(F) is g-closed in X for each closed set F in Y.

1.2. Definition

A map $f: X \to Y$ is called

- a) generalized continuos (g-continuous) if f⁻¹(F) is g-closed in X for each closed set F in Y,
- b) regular generalized continuos (rg-continuous) if $f^{-1}(F)$ is rg-closed in X for each closed set F in Y,
- c) Strong semicontinuos if f ⁻¹(F) is strong semiclosed in X for each closed set F in Y.

II.DECOMPOSITION

Two decompositions of continuous maps, two decompositions of closed maps and two decompositions of contra continuous maps in topological spaces are obtained in this section. Further, we consider Baker's [1] decomposition of continuity for a brief study.

2.1.Theorem

A subset S is closed in X if and only if it is both gclosed and strong semi closed in X.

Proof:

Necessity is trivial. We prove the sufficiency. Let S be both g-closed and strong semi-closed in X. Since, S is strong semi-closed in X,S = $A \cap F$, where A is regular open and F is closed in X. So, $S \subseteq A$ and $S \subseteq F$. Since S is g-closed, $cl(S) \subseteq A$. Also, we have, $cl(S) \subseteq cl(F) = F$. This implies, $cl(S) \subseteq A \cap F = S$. Hence cl(S) = S. Therefore Sis closed.

2.2.A Theorem

subset S is closed in X if and only if it is both rgclosed and strong semi closed in X.

Proof:

Necessity is trivial. We prove the sufficiency. Let S be both rg-closed and strong semi closed in X. Since, S is strong semi closed in X,S=A \cap F, where AisregularopenandFisclosedinX.So,S \subseteq A andS \subseteq F. Since S is rg-closed, cl(S) \subseteq A. Also, wehave, cl(S) \subseteq cl(F)= F. This implies, cl(S) \subseteq A \cap F=S. Hence cl(S)=S.ThereforeSisclosed.

2.3. Corollary

The following are equivalent for amapf: $X \rightarrow Y$:

- (i) fiscontinuous,
- (ii)fis g-continuous and strong semi continuous,
- (iii)fis rg-continuous and strong semi continuous. Proof:

The proof follows from Theorem 2.1. and Theorem 2.2.

2.4. Definition

A map $f:X \rightarrow Y$ is said to be a strong semi-closed map if f(F) is strong semi-closed in Y for each closed set F in X.

2.5. Corollary

The following are equivalent for a map $f:X \to Y$:

- (i) fis closed,
- (ii) fis g-closed and strong semi closed,
- (iii) fis rg-closed and strong semi closed.

Proof:

Follows from Theorem 2.1. and Theorem 2.2.

2.6. Corollary

The following are equivalent for a map $f: X \rightarrow Y$:

- 1. f is contra continuous,
- fis contrag-continuous and contra strong semi continuous,
- fis contrarg-continuous and contra strong semi continuous.

Proof:

Follows from Theorem 2.1. and Theorem 2.2.

Baker[1] obtained ade composition of continuity: A map $f:X \to Y$ is continuous if and only if, for each open set V in Y, $f^{-1}(V) \subseteq \inf (cl(f^{-1}(cl(V))))$ and $f^{-1}(V)$ is open in the sub space $cl(f^{-1}(cl(V)))$.

For brevity, a map $f: X \rightarrow Y$ is called B_1 -continuous if $f^{-1}(V) \subseteq int (cl(f^{-1}(cl(V))))$ for each open set V in Y and a map $f: X \rightarrow Y$ is called B_2 -continuous if $f^{-1}(V)$ is open in the subspace $Cl(f^{-1}(cl(V)))$ for each open set V in Y, in the present study.

Example 2.7.

Example 2.8.

Let $X = \{a, b, c\}$ and $\tau = \{\Box, \{a\}, \{b\}, \{a, b\}, X\}$. Define $f: (X, \Box) \to (X, \Box)$ by f(b) = f(c) = a and f(a) = c. Then f is B_1 -continuous, strong semi continuous but is neither B_2 -continuous nor g-continuous nor g-continuous.

Example 2.9.

Let $X = \{a, b, c, d, e\}$, $Y = \{x, y, z\}$, $\tau = \{\Box\Box, \{a\}, \{b\}, \{a, b\}, X\}$ and $\Box = \{\Box\Box, \{x\}, \{y, z\}, Y\}$. Define $f: (X, \tau) \rightarrow (Y, \Box)$ by f(a) = f(b) = f(c) = x, $f\{d\} = y$ and f(e) = z. Then f is g-continuous and g-continuous but g-continuous.

Example 2.10.

$$\begin{split} \text{Let} X &= \{a,b,c,d\}, Y = \{x,y,z\}, \tau = \{\Box,\{c\},\{d\},\{c,d\},\{a,c\},\{a,c,d\},X\} \text{ and } \\ \sigma &= \{\Box,\{z\},\{x,y\},Y\}. \quad \text{Define } f : (X,\tau) \rightarrow (Y,\sigma) \text{by} f(a) = \\ f(b) &= f(c) = x \quad \text{and} f(d) = \quad z. \text{Thenf} \quad \text{is strong} \\ \text{semicontinuous and} B_2\text{-continuous but} \qquad \text{is neitherg-continuous norrg-continuous}. \end{split}$$

Example 2.11.

Let (X, τ) and (Y, \Box) be as in Example 2.10. Define $f:(X, \tau) \to (Y, \Box)$ by f(a) = f(b) = x, f(c) = z and f(d) = y. Then f is B_2 -continuous but not strong semi continuous.

III.REMARK

In this remark, we sum up the results.

- (a)The decomposition of continuity into semi continuity and D(c, s)-continuity obtained in[2] is the same as the decomposition of continuity obtained by Ganster and Reilly[3], because the notion of semi continuity coincides with the notion of quasi continuity[4] and the notion of D(c, s)-continuitycoincides with the notion of ic-continuity.

 (b) The decompositions of continuity obtained in
- (b) The decompositions of continuity obtained in Corollary 2.3.are different from other decompositions of continuity considered in this paper.
- (c) The decompositions of continuity obtained in Corollary 2.3. are independent of other decompositions of continuity considered, including Levine's and Baker's, except those involving semi continuity and □-continuity.
- (d) The second decomposition obtained, is an improvement over the first.

REFERENCES

- [1] Baker, C.W., A note on the decomposition of continuity, Acta Math. Hungar., 75(1997), 245-251.
- [2] Dontchev, J. and Ganster, M.,On 8-generalized closed sets and TY. spaces, Mem.Fac.Sci.KochiUniv.Ser.A,Math., 17(1996),1 5-31.
- [3] Ganster, M. and Reilly, I.L., Another decomposition of continuity, AnnalsoftheNewYorkAcademyofSciences, 704(19 93),135-141.
- [4] Neubrunnova, A. On certain generalizations of the notion of continuity, *Mat.Casopis*,23(1973),374-380.