
© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 75

An Analysis and Detection of SQL Injection Queries

Using Feature Based Approach

Shivraj Sharma

PG Scholar, Department of Computer Science & Engineering, Shekhawati Institute of Engineering &

Technology, Sikar, Rajasthan, India

Abstract- SQL Injection has been one of the most

critical security threats for web based applications. As

per Open Web Application Security Project (OWASP)

top ten most critical threat list for web applications

SQL Injection stands first in the list published in 2013

and 2017. Researchers and practitioners have been

broaching various schemes to hammer away at the SQL

injection problem. However, prevailing approaches

either fall short to cope with the full scope of the

problem or have bottlenecks that prevent their use and

adoption. The basis behind SQL injection attack is

fairly straightforward. When a web application receives

user data as input, at that juncture, there is a chance for

malicious user to enter carefully concocted data that

cause the input to be construed as part of a SQL query

instead of data. A successful SQL injection attack

divulges critical confidential information to the hacker.

In this paper a comprehensive review of various types

of SQL injection attacks has been carried out. For the

readers to understand better, a real time scenario of an

vulnerable application has been designed that does not

detect SQL injection attack query and this application

lets that attack reveal the information stored in the

underlying database to the malicious user. This paper

proposes an enhanced approach of defensive coding to

mitigate SQL injection attack. In the proposed work,

features of various SQL injection queries have been

closely examined to identify them. This technique has

been named as feature based methodology to identify

SQL injection queries. In this paper the analysis of the

feature based SQL injection identification methodology

has been presented.

Index Terms Attack, Injection, SQL, Query,

Vulnerability, Tautology, Hacker, Database, Web,

Application, Threat, OWASP, Feature Based

Approach.

 INTRODUCTION

These days individuals are more intrigued by setting

up their business on the web or exchanging their

regular business to online mode. These online

organizations are completed by a web based

application. These web applications stretch out

offices of the organizations to their particular clients.

The acknowledgment of these web applications is on

upsurge inferable from simplicity of their utilization,

their 24×7 accessibility and efficient qualities.

Relatively every business has begun its web form

with the goal that it never again gets behind in th

period of data innovation. Presently, how these web

applications play out their business to actualize their

lumbering business. These web application are

intelligent in nature do that they are anything but

difficult to use by the clients. Clients who need the

administrations of the web application can open the

application on their web empowered gadgets, for

example, cell phones, PCs, work areas and so forth.

Database is the most vital resource of a web

application. It stores the helpful data of an

association. Inferable from the significance of the

data databases are inclined to assaults to increase

unauthorized access to the data. SQL remains for

Structured Query Language. SQL is the main

language that is utilized by the application designers

to build up the correspondence between the front end

UIs with the backend databases. The backend

database is associated with the web application. The

data can be recovered at the client's request or

included, altered or erased. SQL is the main language

that is utilized to set the correspondence with the

underneath database. A defenseless web application

offers approach to unlawful access to the underneath

database by the application of SQLIA. SQLIAs are

propelled by the clients through exceptionally

oversaw inputs that are provided to the web

application. In this way it is constantly required to

recognize the inquiries that can dispatch SQLIA.

Work displayed here goes for the same.

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 76

SQL injection alludes to a class of code injection

assaults in which information given by the client is

incorporated into a SQL query so that piece of the

client's info is dealt with as SQL code. By utilizing

these vulnerabilities, an aggressor can submit SQL

orders specifically to the database. These assaults are

a genuine risk to any web application that gets

contribution from clients and joins it into SQL

inquiries to a hidden database. A large portion of the

web applications operational on the web work along

these lines and could subsequently be powerless

against the SQL injection [1].

An unauthorized access to the database by a noxious

client can risk its privacy, trustworthiness and

specialist. Thus, the framework could bear

overwhelming misfortune in giving appropriate

administrations to its clients or it might confront

finish demolition [2]. As indicated by the reviews of

performed by Open Web Application Security

Project (OWASP) in the years 2013 and 2017 the

SQL Injection has been set at the primary spot of the

rundown of 10 most basic web based application

security dangers [3].

Fig. 1 Demonstration of SQL Injection

In the figure 1 demonstration of a SQL injection

attack has been presented. At the login screen of a

web application a user provides his username and

password so that he can securely log in at the

application. However, a malicious user provides a

specially crafted username and or password. The

application, in response of these inputs, generates a

dynamic SQL query that is transmitted to the

underneath database. Following query is generated in

response of malicious inputs by the application:

SELECT * FROM register WHERE username= ˈ0ˈ

ORˈ0ˈ=ˈ0ˈ--ˈ and password= ˈ ˈ

The above query when executed by the DBMS of the

application allows the malicious user to login in the

application. The hacker has used inline comment to

bypass the authentication so password cannot be

verified in this particular case.

To mitigate these vulnerabilities, many prevention

techniques have been suggested such as manual

approach, automated approach, secure coding

practices, static analysis and so on. Though proposed

approaches have achieved their goals to some extent,

SQL Injection Vulnerabilities in Web applications

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 77

remain as a major concern among application

developers [4].

The rest of the paper is organized as follows; Section

II defines SQL injection types that are pertinent to

our present discussion. Section III discussed the

related work in the detection and prevention of

SQLIA. Section IV presents the proposed work to

detect SQLIA. In section V various results have been

analyzed. Section VI concludes the discussion with a

future scope.

II.SQL INJECTION TYPES

2.1 Tautologies

The main objective of tautology based attacks is to

inject code in the conditional based statements so that

they are always evaluated as true [5]. It is done, by

simply making the where clause always true for

every query, which results in bypassing the condition

inside the SQL statement, for instance

SELECT * FROM User_info WHERE

Username=‟RAHUL‟ and Password=‟12500‟

In this query attacker can inject OR‟1‟=‟1‟ The

resulting query will be:

SELECT * FROM User_Info WHERE

Username=‟‟OR‟1‟=‟1‟-- and Password=‟Idontcare‟

This enables the attacker to get all the records from

the table. So in this way username and password of

all the stored users in the database can be extracted.

Tautology- based SQL injection techniques are used

by maximum hackers to bypass the authentication

phase by just adding “--” inline comment, which

makes the rest of the SQL command as comment.

2.2 Logically Incorrect Queries

The aim of the attacker is to gather all possible

information about the structure and the schema of the

tables and their fields inside the database. This

belongs to the SQL manipulation attack where the

error message generated by the database provides the

attacker with an advantage. The working is quite

simple. Here, injected wrong or incorrect SQL

statement will generate some error message from

databases that will provide the attacker the necessary

information. Due to incongruous error handling,

some internal database error message, specific to that

particular database version, can be shown to the

attacker because of which vital information about the

database structure is revealed to the attackers which

help him to conduct more exact attack that will have

more impact on its target website [6].

We can limit the output errors or use customized

error messages to avoid information leakage. The

error that is shown will be devoid of any specific

useful information.

Some specific examples that falls under this category

are:-

SELECT * FROM User_unit1 WHERE

Username=abc HAVING „1‟=‟1‟—and

Password=‟123456‟

Error generated:

“Column „User_unit1.UserID‟ is invalid in the select

list because it is not contained in either an aggregate

function or the GROUP BY clause”

This error message displays the table with column

name „UserInfo.Username‟

In this way all column names of the table can be

extracted. We can have two types of error returns

logical and syntactical.

The name of the columns are revealed by the logical

errors which fetches the columns or table names

while syntactical errors informs which parameters are

vulnerable for an injection attack.

2.3 Union Query

In this type of SQLIA, which is injected based query

which once joined with the safe query using the

keyword UNION in order to get information one

which related to the other tables from the concepts or

the application [4] And also this type of attack is

surely used in order to bypass the authentication

process and also to fetch or extract data by inserting

the UNION operator to the normal query. In the

following example the second query is malicious

because the text “--” is disregarded as it becomes

comment for the SQL parser. However, if the query

is executed the attacker receives the credit card

information [11].

SELECT * FROM accounts WHERE id=‟212‟

UNION SELECT * FROM credit_card WHERE

user=‟admin‟—and pass=‟pass‟ [11].

2.4 Piggy- Backed Queries

This attack also inserts the malicious SQL queries

into the normal SQL query. It is possible because

many SQL queries can be processed if the operator

“;” is added after each query. Following query is an

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 78

example. Note that the operator “;” is inserted at the

end of query.

SELECT * FROM user WHERE id=‟admin‟ AND

password=‟1234‟;DROP TABLE user;--;

The result of query 3 is the deletion of the user table

[10].

Beside these attacks there are a few more attacks:

Stored Procedures, Inference, Alternate Encodings;

Blind Injection and Timing Attacks. However, these

additional attacks are not pertinent to our current

discussion.

III.RELATED WORK

A. Detection and Prevention of SQL Injection

Attacks Using Novel Method in Web

Applications[7]

Tejinderdeep Singh Kalsi and Navjot Kaur propose a

new approach. This technique has two main phases:

runtime analysis and static analysis. The first phase is

dynamic analysis method which depends upon

applying tracking methods to process and monitor the

execution processes of all received queries. The next

phase is a static analysis that is performing a string

matching between the received SQL queries and

previous expected SQL queries to stop any query that

is described as a cautious query [7].

B. Study on SQL Injection Attacks: Mode,

Detection and Prevention[8]

Subhranil Som, Sapna Sinha and Ritu Kataria sugges t

a strategy to change SQL query into number of

helpful tokens by applying tokenization and after that

encoding all literals, fields, table and information on

the query by AES algorithm to avoid SQLIA [8].

C. Enhanced Approach to Detection of SQL

Injection Attack[9]

Raja Prasad Karuparthi and Bing Zhou propose an

enhanced approach of DUD by using a SQL injection

sanitizer in the flow which enables a detection of

attack at the initial level by minimizing the utilization

of time in processing [9].

D. Machine Learning for SQL Injection Prevention

on Server - Side Scripting[10]

Krit Kamtuo and Chitsutha Soomlek propose a

framework of SQL injection prevention using

compiler platform and machine learning. In this

framework SQL injection command datasets are

extracted. The input attribute will be sent to the

machine learning models as well as prediction of

SQL injection is reported [10].

IV. PROPOSED WORK

Proposed Solution

This section describes the algorithms which are

involved in the proposed dissertation. In the proposed

solution three algorithms have been proposed to

design an application: These are,

1. Algorithm for Feature Based SQL Injection

Query Detection

2. Algorithm for Detection of SQLIA Related to

Tautologies containing Relational Operators

3. Algorithm for Detection of SQLIA Related to

UNION and INTERSECT Queries

4.1 Algorithm for Feature Based SQL Injection

Query Detection

In our proposed concept we have proposed an

algorithm, which will be used for performing a check

that the query fired by the user is an SQL Injection or

not.

The algorithm contains the following steps:

Step 1: First the Query is provided as input in the

form which we created for the Query Analysis

Step 2: Handling of the Nested Queries , firstly the

components of the queries are separated by

searching for the () parenthesis , in order to find

the presence of any of the inner query and once

the query presence is identified then the two or

more than two queries are processed separately

and have to undergo all the remaining steps of

the algorithm.

Step 3: In the First Check the Query is check for the

DROP keyword as , to avoid SQL Injection

which can delete the table structure

Step 4: In the Second check we check for the

validity of the SQL statement, in order to check

whether it is proper SQL statement i.e. begin

with SELECT,INSERT etc..

Step 5: In the third check we will avoid the SQL

Injection for the value '1'='1' , this type of

injection can be given in various ways , so we

implemented this in two sub section , firstly

containing OR statement , where we split the

query on the basis of OR keyword and then

checked the parameters for similarity and if same

then it SQL Injection Attack and second a simple

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 79

Query which contains only statements like '1'='1'

is handled after checking presence of = and

checking parameters for equality.

Step 6: Apply the constraints for checking the

relational operators based equality 8>7 ,5<6 etc.

Step 7: Also compound queries like the UNION and

INTERSECT.

Step 8: Then we have check for the queries with

intension of knowing the tables in the databases.

Step 9: Finally we have checked the queries with

have no results, just fired in order to know the

table structure.

Following flowchart shows how various steps of this

algorithm are performed in order to get the desired

results.

Fig. 2 Flowchart for Feature Based SQL Injection

Query Detection

4.2 Algorithm for Detection of SQLIA Related to

Tautologies containing Relational Operator

The algorithm of the login process is described in the

following steps:

Step 1: First the Query is provided as input in the

form which we created for the Query Analysis

Step 2: Search for presentation of Relational

Operator like >,<,<>,=.

Step 3: Split into two part and extract operands on

both sides.

Step 4: If the operands are numeric and condition of

operator holds true , then stop else goto step 5.

Step 5: Execute the query 1 and display its results.

Step 6: Stop Application

Fig. 3 Flowchart for Detection of SQLIA Related to

Tautologies containing Relational Operator

4.3 Algorithm for Detection of SQLIA Related to

UNION and INTERSECT Queries

Step 1: First the Query is provided as input in the

form which we created for the Query Analysis

Step 2: Search for the keyword like UNION and

INTERECTION and then split the queries into

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 80

two sub-queries using the function related to

split.

Step 3: Examine the sub-query1 for the SQL

Injection using the algorithm 3.2.3.

Step 4: If SQL Injection is found then stop the

execution of query otherwise goto step 5.

Step 5: Execute the sub-query 1 and display its

results.

Step 6: Examine the sub-query2 for the SQL

Injection using the algorithm 3.2.3.

Step 7: If SQL Injection is found then stop the

execution of query otherwise goto step 8.

Step 8: Execute the sub-query 2 and display its

results.

Step 9: If no SQL Injection found in sub-query 1

and sub-query 2 then execute complete query

and display its results

Step 10: Stop Application

Fig. 4 Flowchart for Detection of SQLIA Related to

UNION and INTERSECT Queries

V. RESULT ANALYSIS

Case I: Execution Result of Query „X‟=‟X‟

SELECT * FROM employee WHERE

emp_id='emp_001' OR 'x'='x'

Fig. 5 Non-Secure Mode: Demonstration for Case I

Fig. 6 Secure Mode: Demonstration for Case I

Case II: SQL Injection Attack to get the column

names

SELECT * FROM employee WHERE

emp_id='emp_001' AND emp_name IS NULL

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 81

Fig. 7 Non-Secure Mode: Demonstration for Case II

Fig. 8 Secure Mode: Demonstration for Case II

Case III: SQL Injection Attack to delete the table

with its schema

SELECT * FROM employee; DROP TABLE

employee

Fig. 9 Non-Secure Mode: Demonstration for Case III

Fig. 10 Secure Mode: Demonstration for Case III

Case IV: SQL Injection Attack to get the table names

from the database

SELECT table_name FROM

information_schema.tables

Fig. 11 Non-Secure Mode: Demonstration for Case

IV

Fig. 12 Secure Mode: Demonstration for Case IV

Case V: SQL Injection Attack pertaining to relational

operator based tautology

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 82

SELECT * FROM employee WHERE

emp_id='emp_001' AND 5>2

Fig. 13 Non-Secure Mode: Demonstration for Case V

Fig. 14 Secure Mode: Demonstration for Case V

Case VI: SQL Injection Attack using UNION of SQL

Queries

SELECT * FROM employee UNION SELECT *

FROM employee2 WHERE 5>2

Fig. 15 Non-Secure Mode: Demonstration for Case

VI

Fig. 16 Secure Mode: Demonstration for Case VI

Table I. Comparison of the vulnerable and proposed

approach

Sr.

No.

SQL Injection Query Result Analysis

Non-Secure Mode Secure Mode

1 Tautology based SQL Injection Attack

SELECT * FROM employee WHERE

emp_id=‟emp_001‟ OR „x‟=‟x‟

All the records retrieved from table

employee

SQL Injection Attack

Query Detected

2 SQL Injection Attack to get the column names

SELECT * FROM employee WHERE

emp_id=‟emp_001‟ AND emp_name IS

NULL

All Column Names from table

employee retrieved

SQL Injection Attack

Query Detected

3 SQL Injection Attack to Delete the Table with its schema

SELECT * FROM employee; DROP TABLE

employee

Table employee deleted with its schema SQL Injection Attack

Query Detected

4 SQL Injection Attack to get the table names in the database

SELECT table_name FROM

information_schema.tables

All the table names retrieved from the

database

SQL Injection Attack

Query Detected

5 SQL Injection Attack pertaining to Relational Operator based Tautology

SELECT * FROM employee WHERE

emp_id=‟emp_001‟ AND 5>2

All the records retrieved from table

employee

SQL Injection Attack

Query Detected

6 SQL Injection Attack to Delete all the records of a table

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 83

SELECT * FROM employee ;DELETE

FROM employee

All the records from table employee

deleted

SQL Injection Attack

Query Detected

7 SQL Injection Attack using UNION of SQL Queries

SELECT * FROM employee UNION

SELECT * FROM employee2 WHERE 5>2

All the records retrieved which are

present in the result sets of either of the

sub-queries

SQL Injection Attack

Query Detected

8 SQL Injection Attack using INTERSECT of SQL Queries

SELECT * FROM employee INTERSECT

SELECT * FROM employee2 WHERE 5>2

All the records retrieved which are

present in the result sets of both sub-

queries

SQL Injection Attack

Query Detected

9 SQL Injection Attack using EXCEPT of SQL Queries

SELECT * FROM employee EXCEPT

SELECT * FROM employee2 WHERE 5>2

All the records retrieved which are

present in the result set of first query

but second query

SQL Injection Attack

Query Detected

VI.CONCLUSION

Any web application is prone to the hacker‟s attacks.

Thus, it is always the first and the foremost

requirement to safeguard the web applications from

such attacks. In this paper, we have presented the

approach based on the algorithm which examines the

query segment for the SQL Injection based attack

before preceding the query. This code when clubbed

with the website or any other online application helps

to filter out the data which is entered by the end-user,

and will precede which only that data which is free

for the SQL Injection related queries.

Future scope of the work, still lies on dealing with the

high end queries, as our dissertation relies on the

segmentation based approach, in which we segment

the query and then analyze for the SQL Injection , so

in future work we will try to extend this to deal with

much more complicated queries. Nested queries can

also be incorporated in the future work. Handling

nested queries can be achieved using the same

segmentation approach. First of all presence of any

parenthesis can be identified. Now presence of all the

inner queries can be found out. These inner queries

can be checked for the SQLIA and once verified the

complete query can be checked for the SQLIA. In

case the complete query is not launching any SQLIA

to the underneath database then the whole query can

be granted permission for the execution otherwise the

execution of the query can be halted.

 Following query would be a stimulus for the

interested researchers:

SELECT * FROM employee WHERE emp_id IN

(SELECT emp_id FROM employee2 WHERE

emp_salary=20000 UNION SELECT emp_id FROM

employee WHERE emp_salary =33000 OR 2=2)

REFERENCES

[1] William G.J. Halfond, Jeremy Viegas and

Alessandro Orso, "A Classification of SQL

Injection Attacks and Countermeasures", IEEE,

2006

[2] Diallo Abdoulaye Kindy, Al-Sakib Khan Pathan,

"A Survey on SQL Injection: Vulnerabilities,

Attacks and Prevention Techniques", IEEE 15th

International Symposium on Consumer

Electronics (ISCE), vol. 11, pp. 468-471, 14-17

June 2011

[3] OWASP Top 10 - 2017, “OWASP Top 10 Most

Critical Web Application Security Risks”, pdf of

the document is available at

https://www.owasp.org/images/7/72/OWASP_T

op_10-2017_%28en%29.pdf.pdf [last accessed

on 21 July 2018]

[4] Diallo Abdoulaye Kindy, Al-Sakib Khan

Pathan, "A Detailed Survey on various aspects of

SQL Injection in Web Applications:

Vulnerabilities, Innovative Attacks and

Remedies”, International Journal of

Communication Networks and Information

Security (IJCNIS), vol. 5, no. 2, pp. 80-92,

August 2013

[5] Ashish John, "SQL Injection Prevention by

adaptive algorithm", IOSR Journal of Computer

Engineering, vol. 17, pp. 19-24, January 2015.

[6] Pankajdeep Kaur, Kanwal Preet Kour, "SQL

Injection: Study and Augmentation", IEEE

International Conference on Signal Processing,

© September 2018 | IJIRT | Volume 5 Issue 4 | ISSN: 2349-6002

IJIRT 147096 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 84

Computing and Control (ISPCC), pp. 102-107,

24-26 September 2015

[7] Tejinderdeep Singh Kasli, Navjot

Kaur,”Detection and Prevention of SQL

Injection Attacks using Novel Method in Web

Applications”, International Journal of Advances

in Engineering and Technology (IJAET), vol. 6,

Issue 4, pp. 11-15, December 2015

[8] Subranil Som, Sapna Sinha and Ritu

Kataria,”Study on SQL Injection Attacks: Mode,

Detection and Prevention”, International Journal

of Engineering Applied Sciences and

Technology (IJEAST), vol. 1, Issue 8, pp. 23-29,

July 2016

[9] Raja Prasad Karuparthi and Bing Zhou,

“Enhanced Approach to Detection of SQL

Injection attack”, IEEE International Conference

on Machine Learning and Applications, pp. 466-

469, 18-20 December 2016

[10] Krit Kamtuo, Chitsutha Soomlek, "Machine

Learning for SQL Injection Prevention on

Server-Side Scripting", IEEE International

Computer Science and Engineering

Conference(ICSEC), pp. 1-6, 14-17 December

2016

[11] Dr. Ahmad Ghafarian, "A Hybrid Method for

Detection and Prevention of SQL Injection

Attacks", IEEE Computing Conference, pp. 833-

838, 18-20 July 2017

