Universal Forecasting Scheme (Version 2)

Ramesh Chandra Bagadi

Associate Professor & Head, Department of Civil Engineering, Sanketika Vidya Parishad Engineering College, Visakhapatnam-41, India

Abstract- In this research investigation, the author has detailed a novel method of forecasting.

INTRODUCTION

The best known methodology of Forecasting is that of Time Series Forecasting. A lot of literature is available in this domain.

THEORY

Firstly, we define the definitions of Similarity and Dissimilarity as follows:

Given any two real numbers a and b, their Similarity is given by

Similarity
$$(a,b) = \frac{a^2 \text{ if } a < b}{b^2 \text{ if } b < a}$$

and their Dissimilarity is given by

Dissimilarity
$$(a,b) = \frac{ab - a^2 \text{ if } a < b}{ab - b^2 \text{ if } b < a}$$

Given any time series or non-time series sequence of the kind

$$S = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$$

We can now write y_{n+1} as

$$y_{(n+1)} = y_{(n+1)S} + y_{(n+1)DS}$$
 where

$$y_{(n+1)S} =$$

$$\sum_{i=1}^{n} y_{i} \begin{cases} \sum_{\substack{j=1\\j\neq i}}^{n} \frac{Total \ Exhaustive \ Similarity(y_{i},y_{j})}{Total \ Exhaustive \ Similarity(y_{i},y_{j})+} \\ \sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq r}}^{n} \frac{Total \ Exhaustive \ Dissimilarity(y_{i},y_{j})}{Total \ Exhaustive \ Similarity(y_{r},y_{j})+} \\ Total \ Exhaustive \ Similarity(y_{r},y_{j})+} \\ Total \ Exhaustive \ Dissimilarity(y_{r},y_{j}) \end{cases}$$

$$y_{(n+1)DS} = \sum_{i=1}^{n} y_{i} \begin{cases} \sum_{\substack{j=1\\j\neq i}}^{n} \frac{Total \ Exhaustive \ Dissimilarity(y_{i},y_{j})}{Total \ Exhaustive \ Dissimilarity(y_{i},y_{j})} \\ \frac{\sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq r}}^{n} \frac{Total \ Exhaustive \ Dissimilarity(y_{r},y_{j})}{Total \ Exhaustive \ Dissimilarity(y_{r},y_{j})} \\ \frac{Total \ Exhaustive \ Dissimilarity(y_{r},y_{j})}{Total \ Exhaustive \ Dissimilarity(y_{r},y_{j})} \end{cases}$$

The definitions of Total Exhaustive Similarity and Total Exhaustive Dissimilarity are detailed as follows:

Total Exhaustive Similarity
$$(y_i, y_j)$$
 =
Similarity (y_i, y_j) + Similarity (S_1, S_2) +
Similarity (S_3, S_4) + Similarity (S_4, S_5) +
...... + Similarity (S_k, S_{k+1}) till $S_k = S_{k+1}$ for some k
where $S_1 = \{Smaller(y_i, y_j)\}$ and
 $S_2 = \{L \arg er(y_i, y_j) - Smaller(y_i, y_j)\}$
where $S_3 = \{Smaller(S_1, S_2)\}$ and
 $S_4 = \{L \arg er(S_1, S_2) - Smaller(S_1, S_2)\}$
where $S_4 = \{Smaller(S_3, S_4)\}$ and
 $S_5 = \{L \arg er(S_3, S_4) - Smaller(S_3, S_4)\}$

and so on so forth $where \ S_k = \{Smaller(S_{k-1}, S_k)\} \ and \\ S_{k+1} = \{L \arg er(S_{k-1}, S_k) - Smaller(S_{k-1}, S_k)\}$

and

Similarly, we write Total Exhaustive Dissimilar ity (y_i, y_j) = $Dissimilar \ ity (y_i, y_j) + Dissimilar \ ity (S_1, S_2) +$ Dissimilar ity (S_3, S_4) + Dissimilar ity (S_4, S_5) + + Dissimilar ity (S_k, S_{k+1}) till $S_i = S_{i+1}$ for some l where $S_1 = \{Smaller(y_i, y_i)\}$ and $S_2 = \{ L \arg er(y_i, y_j) - Smaller(y_i, y_j) \}$ where $S_3 = \{Smaller(S_1, S_2)\}$ and $S_4 = \{L \operatorname{arg} \operatorname{er}(S_1, S_2) - \operatorname{Smaller}(S_1, S_2)\}$ where $S_4 = \{Smaller(S_3, S_4)\}$ and $S_5 = \{L \operatorname{arg} \operatorname{er}(S_3, S_4) - \operatorname{Smaller}(S_3, S_4)\}$ -----..... and so on so forth where $S_i = \{Smaller(S_{i-1}, S_i)\}$ and $S_{i+1} = \left\{L\arg er(S_{i-1},S_i) - Smaller(S_{i-1},S_i)\right\}$ Similarly, we can write the Total Exhaustive

REFERENCES

Similarity and Total Exhaustive Dissimilarity for

- [1] Ramesh Chandra Bagadi, Universal Forecasting Scheme http://vixra.org/abs/1803.0069
- [2] Ramesh Chandra Bagadi, Universal Forecasting Scheme, International Journal Of Innovative Research & Technology, Vol 4, Issue 11, April 2018, Pages 43-43, ISSN 2349-6002 http://ijirt.org/Article?manuscript=145722