IFSGb-continuous mappings in intuitionistic fuzzy topological spaces

Angelin Tidy.G¹, Francina Shalini.A²

¹Research Scholar, Department of Mathematics, Nirmala College for Women ²Assistant Professor, Department of Mathematics, Nirmala College for Women

Abstract- In this paper is to define and study the concepts of intuitionistic fuzzy sgb-continuous mappings and intuitionistic fuzzy sgb-irresolute mappings on intuitionistic fuzzy topological spaces. Further relationship between intuitionistic fuzzy sgb-continuous mapping with other intuitionistic fuzzy continuous mappings a established. And intuitionistic fuzzy slightly sgb-continuous functions, we investigate some of their properties.

Index Terms- Intuitionistic fuzzy topology, Intuitionistic fuzzy sgb-continuous mappings, Intuitionistic fuzzy sgb-irresolute mappings and Intuitionistic fuzzy slightly sgb-continuous functions.

1. INTRODUCTION

As a generalization of fuzzy sets, the concepts of intuitionistic fuzzy sets were introduced by Atanassov [4]. Recently, Coker [5] introduced the basic definitions and properties of intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In 2017, Angelin Tidy and Francina Shalini [2] introduced sgb-continuous and sgbirresolute in topological spaces. In this paper we introduce intuitionistic fuzzy sgb-continuous mappings and intuitionistic fuzzy sgb-irresolute mappings. And we introduce and study the concepts of intuitionistic fuzzy slightly sgb-continuous in intuitionistic fuzzy topological space.

2. PRELIMINA RIES

Definition 2.1: [4] Let X be a nonempty fixed set. An intuitionistic fuzzy set (briefly IFS) A is an object of the form A = { $\langle x, \mu(x), \nu(x) \rangle$: $x \in X$ }, where μ and ν are degrees of membership and non-membership of each $x \in X$, respectively, and $0 \le \mu(x) + \nu(x) \le 1$ for each $x \in X$. A class of all the IFS's in X is denoted as IFS(X). When there is no danger of confusion, an IFS

A = { $\langle x, \mu(x), \nu(x) \rangle$: $x \in X$ } may be written as A = $\langle \mu_A, \nu_A \rangle$.

Definition 2.2: [4] Let X be a nonempty set and A = $\langle \mu_A, \nu_A \rangle$, B = $\langle \mu_B, \nu_B \rangle$ IFSs in X. Then (1) A \subseteq B if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$, for all x \in X, (2) A = B if A \subseteq B and B \subseteq A,

(3) $\overline{A} = \{ \langle x, \nu_A(x), \mu_A(x) \rangle : x \in X \},$ (4) $A \cap B = \{ \langle x, A \land \mu_B, \nu_A \land \nu_B \rangle : x \in X \}$ [15], (5) $A \cup B = \{ \langle x, A(x) \lor \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}$ [15].

Definition 2.3: [4] IFS's $\tilde{0}$ and $\tilde{1}$ are defined as $\tilde{0} = \{\langle x, 0, 1 \rangle : x \in X\}$ and $\tilde{1} = \{\langle x, 1, 0 \rangle : x \in X\}$, respectively.

Definition 2.4: [10] Let α , $\beta \in [0, 1]$ and $\alpha + \beta \leq 1$. An intuitionistic fuzzy point (IFP for short) $p_{(\alpha,\beta)}$ of X is an IFS of X defined by

 $p_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta) & \text{ if } x = p, \\ (0,1) & \text{ otherwise.} \end{cases}$

Definition 2.5: [5] An intuitionistic fuzzy topology (IFT for short) on a nonempty set X is a family of IFSs in X satisfying the following axioms:

- $(1)\,\tilde{0}\,,\;\tilde{1}\in\tau,$
- (2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,

(3) $\bigcup G_i \in \tau$ for any arbitrary family $\{G_i : i \in J\} \subseteq \tau$. In this case, the pair (X, τ) is called an intuitionistic

fuzzy topological space (briefly, IFTS) and members of τ are called intuitionistic fuzzy open (briefly, IFO) sets. The complement

 \overline{A} of an IFO set A is called an intuitionistic fuzzy closed (IFC) set in X. Collection of all IFO (resp., IFC) sets in IFTS X is denoted as IFO(X) (resp., IFC(X)).

Definition 2.6: [5] Let (X, τ) be an IFTS and $A = \langle \mu_A, \nu_A \rangle$ an IFS in X. Then the fuzzy interior and fuzzy closure of A are denoted and defined as Cl $A = \bigcap \{K : K \text{ is an IFC set in X and } A \subseteq K\}$,

Int $A = \bigcup \{G : G \text{ is an IFO set in } X \text{ and } G \subseteq A\}$.

Definition 2.7: [10] Let $p_{(\alpha, \beta)}$ be an IFP in IFTS X. An IFS A in X is called an intuitionistic fuzzy neighborhood (IFN) of $p_{(\alpha, \beta)}$ if there exists an IFOS B in X such that $p_{(\alpha, \beta)} \in B \subseteq A$.

Definition 2.8: [3] An IFS A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } in an IFTS (X, τ) is said to be

- intuitionistic fuzzy b- closed set[2] (IFbCS) if cl(int(A)) ∩int(cl(A)) ⊆ A,
- 2) intuitionistic fuzzy α -closed set[7] (IF α CS) if $cl(int(cl(A))) \subseteq A$.

Definition 2.9: [3] An IFS A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } in an IFTS (X, τ) is said to be

- intuitionistic fuzzy b open set[2](IFbOS) if A ⊆int(cl(A)) U cl(int(A)),
- 2) intuitionistic fuzzy α -open set[7] (IF α OS) if A \subseteq int(cl(int(A))).

Definition 2.10: [3] An IFS A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } in an IFTS (X, τ) is said to be

- intuitionistic fuzzy generalized αclosed set[10] (IFGαCS) if αcl(A) ⊆ U whenever A ⊆ U and U is an IFαOS in (X,τ),
- intuitionistic fuzzy α generalized semi closed set[8] (IFαGSCS) if αcl(A) ⊆ U whenever A ⊆ U and U is an IFSOS in (X,τ),

Definition 2.11: [3] Let (X, τ) be an IFTS and A = $\langle x, \mu_A, \nu_A \rangle$ be an IFS in (X, τ) . Then the intuitionistic fuzzy b closure of A (bcl(A)) and intuitionistic fuzzy b interior of A (bint(A)) are defined as

- 1) bint(A) = U { G / G is an IFbOS in X and G \subseteq A},
- 2) bcl (A) = \bigcap { K / K is an IFbCS in X and A \subseteq K }.

Definition 2.12: [3] An IFS A is said to be an intuitionistic fuzzy semi generalized b-closed set (IFSGbCS) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS in (X,τ) .

An IFS A is said to be an intuitionistic fuzzy semi generalized b-open set (IFSGbOS) in (X,τ) if the complement A^c is an IFSGbCS in (X,τ) .

Definition 2.13:[1] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy totally continuous if in verse image of every intuitionistic fuzzy open set in Y is an intuitionistic fuzzy clopen set in X.

Definition 2.14: Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an

(1) intuitionistic fuzzy continuous (IF continuous in short) if $f^{1}(B) \in IFOS(X)$ for every $B \in \sigma$ [6],

(2) intuitionistic fuzzy α -continuous (IF α -continuous in short) if $f^{1}(B) \in IF\alpha OS(X)$ for every $B \in \sigma$ [8],

Definition 2.15: Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an

(1) intuitionistic fuzzy generalized α -continuous(IFG α -continuous in short) if f⁻¹(B) is an IFG α CS for every IFCS B of (Y, σ)[9].

(2) intuitionistic fuzzy α -generalized semi continuous (IF α GS-continuous in short) if f⁻¹(B) is an IF α GSCS for every IFCS B of (Y, σ)[7]

Definition 2.16: Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said to be an

(1) intuitionistic fuzzy irresolute (IF irresolute in short) if $f^{1}(B) \in IFCS(X)$ for every IFCS B in Y[11], (2) intuitionistic fuzzy generalized irresolute (IFG irresolute in short) if $f^{1}(B)$ is IFGCS in X for every IFGCS B in Y[11].

3. INTUTIONISTIC FUZZY SEMI GENERALIZED b-CONTINUOUS MAPPINGS

In this section we introduce intuitionistic fizzy semi generalized b-continuous mapping and study some of its properties.

Definition 3.1: A mapping f: $(X,\tau) \rightarrow (Y,\sigma)$ is called an intuitionistic fuzzy semi generalized b-continuous (IFSGb continuous) if f¹(B) is an IFSGbCS in (X,τ) for every IFCS in (Y,σ) .

Example 3.2: Let X={a,b}, Y={u,v}, G_1 = $\langle x, (0.7, 0.8), (0.3, 0.2) \rangle$ and G₂= $\langle x, (0.5, 0.6), (0.4, 0.3) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. Then f is an IFSGb continuous mapping.

Theorem 3.3: Every IF continuous mapping is an IFSGb continuous mapping.

Proof: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be an IF continuous mapping. Let A be an IFCS in Y. Since f is an IF continuous mapping, $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IFSGbCS, $f^{-1}(A)$ is an IFSGbCS in X. Hence f is an IFSGb continuous mapping.

Example 3.4: IFSGb continuous mapping \rightarrow IF continuous mapping.

Let X={a,b}, Y={u,v}, G₁= $\langle x, (0.7, 0.8), (0.3, 0.2) \rangle$ and G₂= $\langle x, (0.5, 0.6), (0.4, 0.3) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. Since the IFS A= $\langle x, (0.4, 0.3), (0.5, 0.6) \rangle$ is IFCS in Y, f¹(A) is an IFSGbCS but not IFCS in X. Therefore f is an IFSGb continuous mapping but not an IF continuous mapping.

Theorem 3.5: Every IF α continuous mapping is an IFSGb continuous mapping.

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be an IF α continuous mapping. Let A be an IFCS in Y. Then by the hypothesis $f^{1}(A)$ is an IF α CS in X. Since every IF α CS is an IFSGbCS, $f^{1}(A)$ is an IFSGbCS in X. Hence f is an IFSGb continuous mapping.

Example 3.6: IFSGb continuous mapping \Rightarrow IF α continuous mapping.

Let X={a,b}, Y={u,v}, G_1= $\langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and G₂= $\langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. Since the IFS A= $\langle x, (0.6, 0.5), (0.3, 0.4) \rangle$ is IFCS in Y, f¹(A) is an IFSGbCS but not IF α CS in X. Therefore f is an IFSGb continuous mapping but not an IF α continuous mapping.

Theorem 3.7: Every IFG α continuous mapping is an IFSGb continuous mapping.

Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be an IFG α continuous mapping. Let A be an IFCS in Y. Then by the hypothesis $f^{1}(A)$ is an IFG α CS in X. Since every IFG α CS is an IFSGbCS, $f^{1}(A)$ is an IFSGbCS in X. Hence f is an IFSGb continuous mapping.

Example 3.8: IFSGb continuous mapping \Rightarrow IFG α continuous mapping.

Let X={a,b}, Y={u,v}, G₁= $\langle x, (0.3, 0.4), (0.7, 0.5) \rangle$ and G₂= $\langle x, (0.6, 0.4), (0.3, 0.5) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle x, (0.3, 0.5), (0.6, 0.4) \rangle$ is IFCS in Y, $f^{-1}(A)$ is an IFSGbCS but not IFG α CS in X. Therefore f is an IFSGb continuous mapping but not an IFG α continuous mapping.

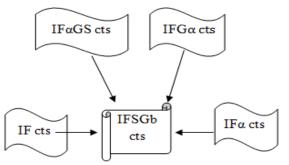
Theorem 3.9: Every IF α GS continuous mapping is an IFSGb continuous mapping.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF α GS continuous mapping. Let A be an IFCS in Y. Then by the hypothesis $f^{1}(A)$ is an IF α GSCS in X. Since every IF α GSCS is an IFSGbCS, $f^{1}(A)$ is an IFSGbCS in X. Hence f is an IFSGb continuous mapping.

Example 3.10: IFSGb continuous mapping \Rightarrow IF α GS continuous mapping.

Let X={a,b}, Y={u,v}, G_I= $\langle x, (0.3, 0.4), (0.7, 0.5) \rangle$ and G₂= $\langle x, (0.5, 0.4), (0.4, 0.4) \rangle$. Then $\tau = \{0_{\sim}, G_I, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X,\tau) \rightarrow (Y,\sigma)$ by f(a) = u and f(b) = v. Since the IFS A= $\langle x, (0.4, 0.4), (0.5, 0.4) \rangle$ is IFCS in Y, f¹(A) is an IFSGbCS but not IF α GSCS in X. Therefore f is an IFSGb continuous mapping but not an IF α GS continuous mapping.

Remark 3.11: We obtain the following diagram from the results we discussed above.



Theorem 3.12: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is IFSGb continuous if and only if the inverse image of each IFOS in Y is an IFSGbOS in X.

Proof: \Rightarrow part

Let A be an IFOS in Y. This implies A^c is IFCS in Y. Since f is IFSGb continuous, $f^1(A^c)$ is IFSGbCS in X. Since $f^1(A^c) = (f^1(A))^c$, $f^1(A)$ is an IFSGbOS in X.

⇐ part

Let A be an IFCS in Y. Then A^c is an IFOS in Y. By hypothesis $f^1(A^c)$ is IFSGbOS in X. Since $f^1(A^c) = (f^1(A))^c$, $(f^1(A))^c$ is an IFSGbOS in X. Therefore $f^{1}(A)$ is an IFSGbCS in X. Hence f is IFSGb continuous.

Theorem 3.13: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFSGb continuous mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ be an IF continuous, then gof : $(X, \tau) \rightarrow (Z, \delta)$ is an IFSGb continuous.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFCS in Y, by hypothesis. Since f is an IFSGb continuous mapping, $f^{-1}(g^{-1}(A))$ is an IFSGbCS in X. Hence gof is an IFSGb continuous mapping.

Definition 3.14: Let (X, α) be an IFTS. The semi generalized b-closure (sgbcl(A) in short) for any IFS A is defined as follows. sgbcl(A) = $\bigcap \{K \mid K \text{ is an}$ IFSGbCS in X and A $\subseteq K$ }. If A is IFSGbCS, then sgbcl(A) = A.

Theorem 3.15: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFSGb continuous mapping. Then the following conditions are hold.

(1) $f(sgbcl(A)) \subseteq cl(f(A))$, for every IFS A in X.

(2) $\operatorname{sgbcl}(f^{1}(B)) \subseteq f^{1}(\operatorname{cl}(B))$, for every IFS B in Y.

Proof: (1) Since cl(f(A)) is an IFCS in Y and f is an IFSGb continuous mapping, $f^{1}(cl(f(A)))$ is IFSGbCS in X. That is $sgbcl(A) \subseteq f^{1}(cl(f(A)))$. Therefore $f(sgbcl(A)) \subseteq cl(f(A))$, for every IFS A in X. (2) Replacing A by $f^{1}(B)$ in (1) we get $f(sgbcl(f^{1}(B))) \subseteq cl(f(f^{1}(B))) \subseteq cl(B)$. Hence $sgbcl(f^{1}(B)) \subseteq f^{1}(cl(B))$, for every IFS B in Y.

Remark 3.16: The composition of two IFSGb continuous mappings need not be IFSGb continuous as can be seen from the following example.

Example 3.17: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $Z = \{s, t\}$. Let $\tau = \{0 \sim ,G_1, 1 \sim \}$, $\sigma = \{0 \sim ,G_2, 1 \sim \}$ and $\delta = \{0 \sim ,G_3, 1 \sim \}$ be IFTs on X, Y and Z respectively where $G_1 = \langle x, (0.2, 0.4), (0.7, 0.5) \rangle$, $G_2 = \langle x, (0.3, 0.5), (0.6, 0.5) \rangle$ and $G_3 = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v and g: $(Y, \sigma) \rightarrow (Z, \delta)$ by g(u) = s and g(v) = t. Then f and g are IFSGb continuous mappings. Since A = is an IFCS in Z, f¹(A) is not an IFSGbCS in X. Therefore the composition map g o f: $(X, \tau) \rightarrow (Z, \delta)$ is not an IFSGb continuous.

Definition 3.18: An IFTS(X, τ) is said to be an intuitionistic fuzzy $T_{\frac{1}{2}}^{*}$ space (in shortIF $T_{\frac{1}{2}}^{*}$) if every IFSGbCS of (X, τ) is an IFCS of (X, τ).

Theorem 3.19: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFSGb continuous mapping. Then f is an IF continuous mapping if X is an IFT \underline{i}^* space.

Proof: Let V be an IFCS in Y. Then $f^{1}(V)$ is an IFSGbCS in X, by hypothesis. Since X is an $IFT_{\frac{1}{2}}^{*}$ space, $f^{1}(V)$ is an IFCS in X. Hence f is an IF continuous mapping.

Theorem 3.20: Let $f : (X, \tau) \to (Y, \sigma)$ be an IFGSGb continuous mapping and g: $(Y, \sigma) \to (Z, \delta)$ be an IFSGb continuous mapping and Y is an IFT $\frac{1}{2}^*$ space. Then gof : $(X, \tau) \to (Z, \delta)$ is an IFGSGb continuous mapping.

Proof: Let V be an IFCS in Z. Then $g^{-1}(V)$ is an IFSGbCS in Y, by hypothesis. Since Y is an IFT $\frac{1}{2}^{*}$ space, $g^{-1}(V)$ is an IFCS in Y. Therefore $f^{-1}(g^{-1}(V))$ is an IFSGbCS in X, by hypothesis. Hence gof is an IFSGb continuous mapping.

Theorem 3.21: Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y.Then the following conditions are equivalent if X is an IFT $\underline{1}^*$ space.

i. f is an IFSCb continuous mapping ii. $f^{1}(B)$ is an IFSCbCS in X for every IFCS B in Y iii.cl(int($f^{1}(A)$)) \cap int(cl($f^{1}(A)$)) \subseteq $f^{1}(cl(A))$ for every IFS A in Y.

Proof : (i) \Rightarrow (ii) is obvious from the Definition 3.1.

(ii) \Rightarrow (iii) Let A be a IFS in Y. Then cl(A) is an IFCS in Y. By hypothesis, $f^{-1}(cl(A))$ is an IFSGbCS in X. Since X is an IFT $\frac{1}{2}^{*}$ space, $f^{-1}(cl(A))$ is an IFCS in X. Therefore cl($f^{-1}(cl(A))$) = $f^{-1}(cl(A))$. Now cl(int($f^{-1}(A)$)) \cap int(cl($f^{-1}(A)$)) \subseteq (cl($f^{-1}(cl(A))$) = $f^{-1}(cl(A))$).

(iii) \Rightarrow (i) Let A be an IFCS in Y. By hypothesis $cl(int(f^{1}(A))) \cap int(cl(f^{1}(A))) \subseteq f^{1}(cl(A)) = f^{1}(A)$. But $f^{1}(A) \subseteq cl(f^{1}(A))$ always. This implies $f^{1}(A)$ is an IFCS in X and hence it is an IFSGbCS. Thus f is an IFSGb continuous mapping. Theorem 3.22: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y.Then the following conditions are equivalent if X is an IFT^{*}₁ space.

i. f is an IFSGb continuous mapping

ii. If B is an IFOS in Y then $f^{1}(B)$ is an IFSGbOS in X

iii. $f^{1}(int(B)) \subseteq int(cl(f^{1}(A)))Ucl(int(f^{1}(A)))$ for every IFS B in Y.

Proof: (i) \Rightarrow (ii): is obviously true.

(ii) \Rightarrow (iii): Let B be any IFS in Y. Then int(B) is an IFOS in Y. Then $f^{-1}(int(B))$ is an IFSGbOS in X. Since X is an IFT^{*}₁ space, $f^{-1}(int(B))$ is an IFOS in X.

Therefore $f^{-1}(int(B)) = int(f^{-1}(int(B)))$. Now $int(cl(f^{-1}(A))) \cup cl(int(f^{-1}(A))) \supseteq int(f^{-1}(int(B))) = f^{-1}(int(B))$. Hence $f^{-1}(int(B)) \subseteq int(cl(f^{-1}(A))) \cup cl(int(f^{-1}(A)))$.

(iii) \Rightarrow (i): Let B be an IFCS in Y. Then its complement B^c is an IFOS in Y. By hypothesis

 $f^{1}(B^{c}) = f^{1}(int (B^{c})) \subseteq int(cl(f^{1}(B^{c})))Ucl(int(f^{1}(B^{c})))).$ This implies $f^{-1}(B^{c}) \subseteq int(cl(f^{1}(B^{c})))Ucl(int(f^{1}(B^{c})))).$ But $int(cl(f^{1}(B^{c})))Ucl(int(f^{1}(B^{c}))) \subseteq f^{1}(B^{c})$ always. Hence $f^{1}(B^{c})$ is an IFOS in X. Since every IFOS is an IFSGbOS, $f^{1}(B^{c})$ is an IFSGbOS in X. Therefore $f^{1}(B)$ is an IFSGbCS in X. Hence f is an IFSGb

continuous mapping.

4. INTUTIONISTIC FUZZY SEMI GENERALIZED b-IRRESOLUTE MAPPINGS

In this section we introduce intuitionistic fuzzy semi generalized b-irresolute mappings and study some of its characterizations.

Definition 4.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy semi generalized b-irresolute(IFSGb irresolute) mapping if f¹(A) is an IFSGbCS in (X, τ) for every IFSGbCS A of (Y, σ) .

Theorem 4.2: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFSGb irresolute, then f is an IFSGb continuous mapping.

Proof: Let f be an IFSGb irresolute mapping. Let A be any IFCS in Y. Since every IFCS is an IFSGbCS, A is an IFSGbCS in Y. By hypothesis $f^{-1}(A)$ is an IFSGbCS in X. Hence f is an IFSGb continuous mapping.

Example 4.3: IFSGb continuous mapping \Rightarrow IFSGb irresolute mapping.

Let X = {a, b}, Y = {u, v}, G₁ = $\langle x, (0.2, 0.4), (0.7, 0.5) \rangle$ and G₂ = $\langle x, (0.5, 0.3), (0.4, 0.6) \rangle$. Then $\tau = \{0, G_1, 1, -\}$ and $\sigma = \{0, G_2, 1, -\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFSGb continuous. We have B = $\langle x, (0.6, 0.7), (0.3, 0.2) \rangle$ is an IFSGbCS in Y but f¹(B) is not an IFSGbCS in X. Therefore f is not an IFSGb irresolute mapping.

Theorem 4.4: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \delta)$ be IFSGb irresolute mappings, then gof: $(X, \tau) \rightarrow (Z, \delta)$ is an IFSGb irresolute mapping.

Proof: Let A be an IFSGbCS in Z. Then $g^{-1}(A)$ is an IFSGbCS in Y. Since f is an IFSGb irresolute mapping. $f^{-1}(g^{-1}(A))$ is an IFSGbCS in X. Hence gof is an IFSGb irresolute mapping.

Theorem 4.5: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFSGb irresolute and g: $(Y, \sigma) \rightarrow (Z, \delta)$ be IFSGb continuous mappings, then gof: $(X, \tau) \rightarrow (Z, \delta)$ is an IFSGb continuous mapping.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFSGbCS in Y. Since f is an IFSGb irresolute,

 $f^{1}(g^{-1}(A))$ is an IFSGbCS in X. Hence gof is an IFSGb continuous mapping.

Theorem 4.6: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFSGb irresolute. Then f is an IF irresolute mapping if X is an IFT $\frac{1}{2}^*$ space.

Proof: Let A be an IFCS in Y. Then A is an IFSGbCS in Y. Therefore $f^{-1}(A)$ is an IFSGbCS in X, by hypothesis. Since X is an IFT $\frac{1}{2}^{*}$ space, $f^{-1}(A)$ is an

 $\ensuremath{\mathsf{IFCS}}$ in X. Hence f is an IF irresolute mapping.

Theorem 4.7: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X and Y are IFT $\frac{1}{2}^{*}$ spaces.

i. f is an IFSGb irresolute mapping

ii. $f^{1}(B)$ is an IFSGbOS in X for each IFSGbOS in Y iii. $f^{1}(\text{int } B) \subseteq \text{int } (f^{1}(B))$ for each IFS B of Y iv. $cl(f^{1}(B)) \subseteq f^{1}(cl(B))$ for each IFS B of Y.

Proof: (i) \Rightarrow (ii): is obvious from the Definition 4.1.

(ii) \Rightarrow (iii): Let B be any IFS in Y and int(B) \subseteq B. Also f¹(int (B)) \subseteq f¹(B). Since int(B) is an IFOS in Y, it is an IFSGbOS in Y. f¹(int(B)) is an IFSGbOS in X, by hypothesis. Since X is an IFT^{*}₁ space, f¹(int

(B)) is an IFOS in X. Hence $f^{1}(int(B))$

 $= \operatorname{int}(f^{-1}(\operatorname{int} (B))) \subseteq \operatorname{int}(f^{-1}(B)).$

(iii) \Rightarrow (iv): It is obvious by taking complement.

(iv) \Rightarrow (i): Let B be an IFSCbCS in Y. Since Y is IFT $\frac{1}{2}^{*}$ space, B is an IFCS in Y and cl(B) = B. Hence

 $f^{1}(B) = f^{1}(cl(B)) \supseteq cl(f^{1}(B))$. But clearly

 $f^{1}(B) \subseteq cl(f^{1}(B))$. Therefore $cl(f^{1}(B)) = f^{1}(B)$. This implies $f^{-1}(B)$ is an IFCS and hence it is an IFSGbCS in X. Thus f is an IFSGb irresolute mapping.

Theorem 4.8: Let $f : (X, \tau) \to (Y, \sigma)$ be an IFSGb irresolute mapping from an IFTS X into an IFTS Y. Then $f^{1}(B) \subseteq cl(int(f^{1}(B)))$ if X is an IFT^{*}₁ space.

Proof: Let B be an IFSGbOS in Y. Then by hypothesis $f^{-1}(B)$ is an IFSGbOS in X.

Since X is an $IFT_{\frac{1}{2}}^*$ space, $f^{-1}(B)$ is an IFOS in X.

Therefore $\operatorname{int}(f^{-1}(B)) = f^{-1}(B)$ and $f^{-1}(B) \subseteq \operatorname{cl}(f^{-1}(B))$ = $\operatorname{cl}(\operatorname{int}(f^{-1}(B)))$. Hence $f^{-1}(B) \subseteq \operatorname{cl}(\operatorname{int}(f^{-1}(B)))$.

Theorem 4.9: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFSGb irresolute mapping from an IFTS X into an IFTS Y. Then $f^{1}(B) \subseteq cl(int(f^{1}(int(B))))$ for every IFSGbOS B in Y, if X and Y are $IFT_{\frac{1}{2}}^{*}$ spaces.

Proof: Let B be an IFSGbOS in Y. Then by hypothesis f⁻¹(B) is an IFSGbOS in X. Since X is an IFT $_{\underline{1}}^*$ space, f⁻¹(B) is an IFOS in X. Therefore

 $\operatorname{int}(f^{1}(B)) = f^{1}(B)$. Since Y is an $\operatorname{IFT}_{\frac{1}{2}}^{*}$ space, B is an IFOS in Y and $f^{1}(B) \subseteq \operatorname{cl}(f^{1}(B)) = \operatorname{cl}(\operatorname{int}(f^{1}(B))) = \operatorname{cl}(\operatorname{int}(f^{1}(\operatorname{int}(B))))$. Hence $f^{1}(B) \subseteq \operatorname{cl}(\operatorname{int}(f^{1}(\operatorname{int}(B))))$.

Theorem 4.10: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be onto, an IFSGb irresolute mapping and an IFC mapping from an IFTS X into an IFTS Y. If X is an IFT $\frac{1}{2}$ space, then Y is also an IFT $\frac{1}{2}$ space.

Proof: Let A be an IFSGbCS in Y. Then by hypothesis $f^{1}(A)$ is an IFSGbCS in X. Since X is an IFT $\frac{1}{2}^{*}$ space, $f^{1}(A)$ is an IFCS in X. Since f is an IFC mapping, A is an IFCS in Y. Therefore Y is an $IFT_{\frac{1}{2}}^{*}$ space.

5. INTUTIONISTIC FUZZY SLIGHTLY SEMI GENERALIZED b-CONTINUOUS MAPPINGS

Definition 5.1: A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy slightly semi generalized b-continuous (IF slightly sgb-continuous) if the inverse image of every IF clopen set in Y is IF sgb-open in X.

Definition 5.2: A function $f : (X, \tau) \rightarrow (Y, \sigma)$ from a IFTS (X, τ) to another IFTS (Y, σ) is said to be an IF slightly sgb-continuous if for each IFP $p(\alpha, \beta) \in X$ and each IF clopen set B in Y containing $f(p(\alpha, \beta))$, there exists an IFsgb-open set A in X such that $f(A) \subseteq B$.

Theorem 5.3: Let $f : (X, \tau) \to (Y, \sigma)$ be a function from an IFTS (X, τ) to another IFTS (Y, σ) then the following statements are equivalent

1. f is an IF slightly sgb-continuous.

2. Inverse image of every IF clopen set in Y is an IF sgb-open in X.

3. Inverse image of every IF clopen set in Y is an IF sgb-closed in X.

4. Inverse image of every IF clopen set in Y is an IF sgb-clopen in X.

Proof: (1) \Rightarrow (2) Let B be an IF clopen set in Y and let $(p(\alpha, \beta)) \in f^{1}(B)$. Since $f(p(\alpha,\beta) \in B$ by (1) there exists an IF sgb-open set A in X containing $p(\alpha, \beta)$ such that $A_{p(\alpha,\beta)} \subseteq f^{-1}(B)$ we obtain that $f^{-1}(B) = U_{p(\alpha,\beta)\in f^{-1}(B)} A_{p(\alpha,\beta)}$, which is an IF sgb-open in X.

(2) \Rightarrow (3) Let B be an IF clopen set in Y ,then B^c is IF clopen. By (2) $f^{-1}(B^c) = (f^{-1}(B))^c$ is an IF sgb-open, thus $f^{-1}(B)$ is an IF sgb-closed set.

 $(3) \Rightarrow (4)$ Let B be an IF clopen set in Y. Then by (3) $f^{-1}(B)$ is IF sgb- closed set. Also B^c is an IF clopen and (3) implies $f^{-1}(B^c) = (f^{-1}(B))^c$ is an IFsgb-closed set. Hence $f^{-1}(B)$ is an IFsgb-clopen set.

 $(4) \Rightarrow (1)$ Let B be an IF clopen set in Y containing $f(p(\alpha,\beta))$. By (4), $f^{-1}(B)$ is an IF sgb-open. Let us take $A = f^{-1}(B)$, then $f(A) \subseteq B$. Hence f is an IF slightly sgb-continuous.

Definition 5.4: The intersection of all IFsgb-closed sets containing an IF set A is called an IFsgb-closure of A and denoted by sgbcl(A), and the union of all

IFsgb-open sets contained in an IF set A is called an IFsgb-interior of A and denoted by sgbint(A).

Remark 5.5: If A = sgbcl(A), then A need not be an IFsgb-closed.

Remark 5.6: The union of two IFsgb-closed sets is generally not an IFsgb- closed set and the intersection of two IFsgb-open sets is generally not an IFsgb open set.

Example 5.7: Let X={a,b,c} and let $\tau = \{0, , 1, A, B, C\}$ C } is IFT on X, where A={<x, (0,1,0), (1,0,1)>}, B={<x, (0,0,1), (1,1,0)>} and C={<x, (0,1,1), (1,0,0)>}. Then the IFSs A^c, B^c are IFsgbOSs but A^c \cap B^c = C^c is not an IFsgbOS of X, since C^c \subseteq C^c and C^c \notin bint(C^c) = 0, And the IFSs A, B are IFsgbCSs but A \cup B = C is not an IFsgbCS of X, since C \subseteq C and bcl(C) = 1. \notin C.

Proposition 5.8: Every intuitionistic fuzzy sgbcontinuous is an intuitionistic fuzzy slightly sgbcontinuous. But the converse need not be true.

Example 5.9: Let X = {a, b}, Y = {u, v} and A = {< x, (1,0), (0,1) >}, B={< x, (0,0.8), (1,0.2)>}, C={< x, (1,0.8), (0,0.2)>}, D={< x, (0.7,0.5), (0.3,0.5) >}. Then $\tau = \{0_{\sim}, 1_{\sim}, A, B, C\}$ and $\sigma = \{0_{\sim}, 1_{\sim}, D\}$ are IFTS on X and Y respectively. Define a mapping f : (X, τ) \rightarrow (Y, σ) by f(a)= u and f(b) = v. Then f is an IF slightly sgb-continuous but not an IFsgbcontinuous. Since f $^{-1}(D^c) = \{< x, (0.3,0.5), (0.7,0.5)>\} \subseteq C$ (semi open set) and bcl(f⁻¹(D^c)) =1~ $\not \subseteq C$.

Proposition 5.10: Every intuitionistic fuzzy sgbirresolute function is an intuitionistic fuzzy slightly sgb-continuous. But the converse need not be true.

Theorem 5.11: If f: $X \rightarrow Y$ is an IF slightly sgbcontinuous and g : $Y \rightarrow Z$ is an IF totally continuous then g o f is an intuitionistic fuzzy sgb-continuous.

Proof: Let B be an IFOS in Z, since g is an IF totally continuous, $g^{-1}(B)$ is an IF clopen set in Y. Now (g o f)⁻¹ (B)= f⁻¹ (g⁻¹ (B)). Since f is an IF slightly sgb-continuous, f⁻¹ (g⁻¹ (B)) is an IFsgbOS in X. Hence g o f is an intuitionistic fuzzy sgb-continuous.

Theorem 5.12: A mapping $f:(X, f) \to (Y, \sigma)$ from an IFTS (X, τ) to another IFTS (Y, σ) is an IF slightly sgb-continuous if and only if for each IFP $p(\alpha,\beta)$ in X and IF clopen set B in Y such that $f(p(\alpha,\beta)) \in B$, $cl(f^{-1}(B))$ is an IFN of IFP $p(\alpha,\beta)$ in X.

Proof: Let f be any IF slightly sgb-continuous mapping, $p(\alpha,\beta)$ be an IFP in X and B be any IF clopen set in Y such that $f(p(\alpha,\beta)) \in B$. Then $p(\alpha,\beta) \in f^{-1}(B) \subseteq bcl(f^{-1}(B)) \subseteq cl(f^{-1}(B))$. Hence $cl(f^{-1}(B))$ is an IFN of $p(\alpha,\beta)$ in X.

Conversely, let B be any IF clopen set in Y and $p(\alpha,\beta)$ be an IFP in X such that $f(p(\alpha,\beta)) \in B$. Then $p(\alpha,\beta) \in f^{-1}(B)$. According to assumption $cl(f^{-1}(B))$ is an IFN of IFP $p(\alpha,\beta)$ in X. So, $p(\alpha,\beta) \in f^{-1}(B) \subseteq cl(f^{-1}(B))$, and by (definition of IF slightly sgb-continuous) there exists an IFsgb-open A in X such that $p(\alpha,\beta)\in A \subseteq f^{-1}(B)$.Therefore f is an IF slightly sgb-continuous.

REFERENCES

- [1] Amal M. Al- Dowais, Abdul Gawad A. Q. Al-Qubati, "On Intuitionistic Fuzzy Slightly πgb-Continuous Functions" Vol. 4, Issue 1, 2017.
- [2] Angelin Tidy G and Francina Shalini A, "On softsgb-continuous functions in soft topological spaces,"International journal of engineering and computing, vol 7, issue no.4,2017.
- [3] Angelin Tidy G and Francina Shalini A, "On intuitionistic fuzzy sgb-closed sets in intuitionistic fuzzy topological spaces," International journal of research trends and innovation, vol. 3, issue 7, 2018.
- [4] Atanassov. K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [5] Coker. D., An introduction to fuzzy topological spaces, Fuzzy sets and systems, 88(1997), 81-89.
- [6] Gurcay. H., Coker. D.,and Es. A. Haydar., On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. Of Fuzzy Math., 5(1997), 365-378.
- [7] M.Jeyaraman A.Yuvarani and O.Ravi, "IFαGS continuous and IFαGS irresolute mappings," International journal of analysis and applications, vol 3, no.2(2013), 93-103.
- [8] Joung Kon Jeon, Young Bae Jun, and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy precontinuity, International

Journal of Mathematics and Mathematical Sciences, 19(2005), 3091- 3101.

- [9] Kalamani. D, Sakthivel. K and Gowri. C. S.,Generalized alpha closed sets in Intuitionistic fuzzy topological spaces, Applied Mathematical Sciences, 6(2012), 4691-4700.
- [10] R. Renuka, V. Seenivasan, "On Intuitionistic Fuzzy Slightly Pre-continuous Functions" Vol. 86, No. 6,2013, 993-1004
- [11] Santhi. R and Sakthivel. K.,Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.