
© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002

IJIRT 148416 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 960

Basic Concepts of Software Testing and Software Testing

Strategies

 Shubham Singhal

B.Tech(CSE), Galgotias University, Greater Noida, Uttar Pradesh, India

Abstract- Software Testing plays an important role to

achieve and improve the software product quality. On

one side, during the development of the software we

improve the quality of the product as we repeat a test-

find defects-fix cycle. On the other side, before the

release of a product in the market we perform system-

tests to determine how accurate our system is

performing. A software testing strategy is a process, for

evaluating the functionality and behavior of a software

product with the intent to find that the software

developed met the specified requirements or not. A

software testing strategy is an outline describing the

software development cycle testing approach. These are

basically the QA strategies describe ways of mitigating

product risks of stakeholders in the test level, the kind

of testing to be performed and which entry and exit

criteria would apply.

Index terms- Software Testing, test-find defects-fix

cycle, system-tests, specified requirements, software

testing strategy, QA strategy

I. INTRODUCTION

Software testing is a verification process conducted

for software quality assessment and improvement.

Generally speaking, the activities for software quality

assessment can be grouped into two broad categories,

namely, static analysis and dynamic analysis.

A. Static Analysis

It is based on the examination of various documents,

namely requirements documents, software models,

design documents, and source code. Traditional static

analysis includes code review, inspection, walk-

through, the analysis of algorithm, and the proof of

correctness. It does not involve the actual execution

of the code which is under development. Instead, it

examines the code and reasons over all possible

behaviors that might arise during run time. Compiler

optimizations are standard static analysis.

B. Dynamic Analysis

The Dynamic analysis of a software system involves

actual program execution in order to uncover possible

program failures. The performance properties of the

program are also observed. Software Programs are

executed and evaluated with both typical and

carefully chosen input values. Many times, the input

set of a program can be impractically large. However,

for practical situations, a finite subset of the input set

can be selected. Therefore, in software testing, we

observe some representative program behaviors and

reach the conclusion about the quality of the system.

Careful selection of finite test set is crucial to

reaching a reliable conclusion.

II. VERIFICATION AND VALIDATION

Two similar concepts related to software testing

frequently used are verification and validation. Both

verification and validation concepts are abstract in

nature, and each can be realized by a set of concrete,

executable activities. The two concepts are explained

as follows:

A. Verification

The verification activity helps us in evaluating the

software system by determining whether the product

of a given development phase satisfies the

expectations and requirements specified before the

start of that phase. One may note that a product can

be an intermediate product, such as requirement

specification, design specification, coding details,

user manual, or even the final product. These

activities that check the correctness of a development

phase are called verification activities.

B. Validation

The validation activity helps us in confirming that a

product meets its intended use. Validation activities

aim at confirming that a product meets its customer’s

© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002

IJIRT 148416 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 961

expectations. In other words, validation activities

focus on the final product, which is tested extensively

from the customer point of view. Thus validation

establishes whether the product meets overall

expectations of the users.

III. FAILURE, ERROR, FAULT, AND DEFECT

In literature on software testing, one can find

references to the terms failure, error, fault, and defect.

Although their meanings are related, but there are

some important distinctions between these four

concepts. In the following, we present first three

terms as they are understood in fault-tolerant

computing community:

A. Failure

A failure is said to occur whenever external behavior

of a system does not conform to that prescribed in the

system specification.

B. Error

An error is a state of the system. In absence of any

action by system for the correction, an error state

could lead to a failure which would not be attributed

to any event subsequent to the error.

C. Fault

A fault is basically the adjudged cause of an error.

IV. OBJECTIVES OF TESTING

The stakeholders in a testing process are the

programmers, the test engineers, the project

managers, and the customers. Different stakeholders

view a test process from the different perspectives as

explained below:

A. It does work

While implementing a program code, the

programmer may want to test whether or not the

coding unit works in normal circumstances.

Programmer gets much confidence if the unit works

to his/her satisfaction. This same idea applies to an

entire system as well—once a system has been

integrated, the developers or programmers may want

to test whether or not the system performs the basic

functions.

B. It does not work

Once the programmer (or the developer) is satisfied

that a programming unit (or the system) works to a

certain degree, more tests are conducted with the

objective of finding faults in the unit (or the system).

Here, idea is to try to make the unit (or the system)

fail.

C. Reducing the risk of failure

Most of the complex software systems contain faults,

which cause system to fail from time to time. This

concept of “failing from time to time” gives rise to

the notion of failure rate. As the faults are identified

and fixed while performing more and more tests,

failure rate of a system generally decreases. Thus, a

higher level objective of performing the tests is to

bring down the risk of failing to the acceptable level.

D. Reducing the cost of testing

The different types of costs associated with a test

process include:

 cost of designing, maintaining, and executing the

test cases,

 cost of analyzing the results of executing each

test case,

 cost of documenting the test cases, and

 cost of actually executing system and

documenting it.

Therefore, less the number of test cases designed,

less will be the associated cost of testing.

V. PRINCIPLES OF TESTING

Software testing is a process of executing a program

with the aim of finding the error. In order to make

our software perform well it should be error free. If

testing is done successfully it will remove all the

errors from the software.

A. Testing shows presence of defects

The primary goal of software testing is to make the

software fail. Software testing reduces the presence

of defects. Software testing talks about the presence

of defects and doesn’t talk about the absence of

defects. Software testing can ensure that defects are

present but it cannot prove that software is defects

free. Even multiple testing can never ensure that

software is completely 100 percent bug-free. Testing

can reduce the number of defects but not removes all

defects.

© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002

IJIRT 148416 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 962

B. Exhaustive testing is impossible

It is the process of testing the functionality of the

software in all possible inputs (valid or invalid) and

pre-conditions is known as exhaustive testing.

Exhaustive testing is impossible means the software

can never test at every test case. It can test only some

of the test cases and assume that software is correct

and it will produce the correct output in every test

case. If the software will test each and every test case

then it will take more cost, effort, etc. and which is

impractical.

C. Early Testing

To uncover the defect in the software, early test

activity shall be started. The defect detected in early

phases of SDLC will very less expensive. For the

better performance of software, software testing will

start at initial phase i.e. testing will perform at the

requirement analysis phase.

D. Defect clustering

In the software project, a small number of the module

can contain most of the defects. The principle to

software testing state that 80% of software defect

comes from 20% of modules.

E. Pesticide paradox

Repeating same test cases again and again will not

find new bugs. So it is necessary to review the test

cases and add or update test cases to find new bugs.

F. Testing is context dependent

The approach of testing depends on context of

software developed. Different types of software need

to perform different types of testing. For example, the

testing of the e-commerce site is different from the

testing of the Android application.

G. Absence-of-errors fallacy

If the built software is 99% bug-free but it does not

follow the user requirement then it is unusable. It is

not only necessary that software is 99% bug-free but

it also mandatory to fulfill all the customer

requirements.

VI. LEVELS OF SOFTWARE TESTING

fig: Levels of Software Testing

As we know that the during the software

development, the software is built step by step that is

starting from gathering the requirements and

expectations of the customer to the finally by coding

it to keep it properly. So, according to the above

diagram the software development takes place by

moving INWARDS in the spiral. Now, the testing of

the software is done in the reverse order by moving

OUTWARDS in the spiral. To ensure the software is

as per the customer expectations and to test it

properly there are four basic levels of testing

performed on it, that are defined below:

A. Unit Testing

In the unit testing, each module of the software is

tested individually to ensure that the every module

produces its specific functionality based on the

implementation. In this level of testing the modules

are tested independently so that one module will not

affect the functionality of another module. Unit’s

internal code/structure, path testing ensures complete

coverage of unit. That is, it basically deals with the

coding part of the software.

B. Integration testing

In this level of software testing, the components are

integrated step by step to form the complete software

and the integrated module is tested to ensure that the

units which were previously working flawlessly

performs appropriately upon integration also. The

focus of the integration testing is on the software

architecture and the construction of the software that

is on the design of the software.

© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002

IJIRT 148416 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 963

C. Validation Testing

In the validation testing, the software is tested against

the SRS (System Requirement and Specification) to

make sure that the developed software fulfills the

requirements and expectations as specified by the

customer. The task is to go through with the

behavior, performance requirements and all kinds of

validation criteria.

D. System Testing

This is the last level of testing conducted on the

complete integrated system, done after the unit,

integration and validation testing. It evaluates the

system compliances with requirements. It brings out

the defects that are not directly accessible to a

module/interface but are based on issues that are

related to design and architecture of the whole

product. It basically deals with system engineering of

the software product.

VII. SOFTWARE TESTING STRATEGIES

A software testing strategy is like a blueprint which

describes the software development cycle testing

approach. It is made to inform testers, managers and

developers on some major issues of the testing

process. This includes testing objective, total time

and resources needed for a project, methods of testing

new functionalities and the testing environment.

Software testing strategies describe how to mitigate

product risks of stakeholders at the test level, which

kinds of testing are to be done and which entry and

exit criteria will apply. They’re made based on

development design documents.

VIII. FACTORS TO CONSIDER IN CHOOSING

SOFTWARE TESTING STRATEGIES

A. Risks

The Risk management is paramount during testing,

thus consider the risks and the risk level. For an

application that is well-established that’s slowly

evolving, regression is a critical risk. That is why

regression-averse strategies make a lot of sense. For a

new application, a risk analysis could reveal various

risks if choosing a risk-based analytical strategy.

B. Objectives

Testing should satisfy the requirements and needs of

stakeholders to succeed. If objective is to look for as

many defects as possible with less time and effort

invested, a dynamic strategy makes sense.

C. Skills

The skills that testers possess and lack must be taken

into consideration, since strategies should not only be

chosen but executed as well. A standard compliant

strategy is a good option when lacking skills and time

in the team to create an approach.

D. Product

Some products such as project development software

and weapons systems tend to have requirements that

are well-specified. This could lead to synergy with

the analytical strategy that is requirements-based.

E. Business

Business considerations and strategy are often

important. If using a legacy system as a model for the

new one, one could use a model-based strategy.

F. Regulations

At some instances, one may not only have to satisfy

stakeholders, but regulators as well. In this case, one

may require a methodical strategy which satisfies

these regulators.

You must select testing strategies with an eye

towards the factors mentioned earlier, the schedule,

budget, and feature constraints of the project and the

realities of the organization and its politics.

VIII. STRATEGIES IN SOFTWARE TESTING

A good software testing or QA strategy requires tests

at all technology stack levels to ensure that every

part, as well as the entire system, works correctly.

A. Leave time for fixing

Setting aside time for testing is of no use if there is

no time set aside for fixing. Once problems are

discovered, developers required time to fix them and

the company needs time to retest the fixes as well.

With a time and plan for both, then testing is not very

beneficial.

B. Discourage passing the buck

© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002

IJIRT 148416 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 964

The same way that testers could fall short in their

reports, developers could also fall short in their effort

to comprehend the reports. One way of minimizing

back and forth conversations between developers and

testers is having a culture that will encourage them to

hop on the phone or have desk-side chat to get to the

bottom of things. Testing and fixing are all about

collaboration. Although it is important that

developers should not waste time on a wild goose

chase, it is equally important that bugs are not just

shuffled back and forth.

C. Manual testing has to be exploratory

A lot of teams generally prefer to script manual

testing so testers follow a set of steps and work their

way through a set of tasks that are predefined for

software testing. This misses the point of manual

testing. If anything could be written down or scripted

in exact terms, it could be automated and belongs in

the automated test suite. The real-world use of the

software will not be scripted, thus testers must be free

to probe and break things without a script.

D. Encourage clarity

Reporting bugs and asking for more information

could create unnecessary overhead costs. A good bug

report could save time through avoiding

miscommunication or a need for more

communication. In the same way, a bad bug report

could lead to a fast dismissal by a developer. These

could create problems. Anyone reporting bugs

should make it a point to create bug reports that are

informative. However, it is also integral for the

developer to out of the way to effectively

communicate as well.

E. Test often

Same as all the other forms of testing, manual testing

will work best when it occurs often throughout the

development project, in general, weekly or bi-

weekly. This helps in preventing huge backlogs of

problems from building up and crushing morale.

Frequent testing is considered the best approach.

Testing and fixing the software product could be

tricky, subtle and political even. Nevertheless, as

long as one is able to anticipate and recognize

common issues, things could be kept running

smoothly.

IX. CONCLUSION

Testing is a crucial activity to be performed during

the software development. Software testing can give

confidence in the quality of the software if it finds

few or no defects. If defects are found, the quality

increases when those defects are fixed. So here we

learned about all the basic concepts of the software

testing activity. Apart from that we also discussed

about what all the software testing strategies we need

to perform to test out the software product. This

guided us to understand the software testing process

along with their strategies in detail.

APPENDIX

A. Positive Testing

Operate applications or software as it should be

operated. Use proper variety of test data, including

data values at boundaries to test if it fails. Verify

actual test results with the expected and see

 Does it behave normally?

 Are results correct?

 Does the software function correctly?

B. Negative Testing

Test for abnormal operations. Test with

illegal/abnormal test data. Intentionally attempt to

make things go wrong and to discover/detect and see

 Does the system fail/crash?

 Does the program do what it should not?

 Does it fail to do what it should?

ACKNOWLEDGEMENT

First & foremost, thanks to the God for his blessings

throughout my research work to complete the

research successfully.

I would like to express my deep and sincere gratitude

to my parents for their love, prayers, care and

sacrifices for educating and preparing me for my

future. I would also like to express my gratefulness to

all my friends and family for their constant

encouragement.

Finally, my special thanks to all the people who have

supported and encouraged me to complete the

research work directly or indirectly.

REFERENCES

© June 2019 | IJIRT | Volume 6 Issue 1 | ISSN: 2349-6002

IJIRT 148416 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 965

[1] Kshirasagar Naik and Priyadarshi Tripathy,

Software Testing and Quality Assurance: Theory

and Practice, Wiley Publications

[2] S. Desikan and G. Ramesh, Software Testing:

Principles and Practices, Pearson Education

[3] Aditya P. Mathur, Fundamental of Software

Testing, Pearson Education

[4] K. K. Aggarwal and Yogesh Singh, Software

Engineering, New Age International Publication.

