
© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 95

Performance Analysis of Load Balancing Algorithm in

Cloud Computing

Swikruti Dash
1
, Amrutanshu Panigrahi

2
, Nihar Ranjan Sabat

3

1,2,3
Department of CSE, CIME, Bhubaneswar, Odisha, India

Abstract- "Distributed computing" is a term, which

includes virtualization, circulated registering, systems

administration, programming, and web

administrations. A cloud comprises of a few

components, for example, customers, datacenter and

dispersed servers. It incorporates adaptation to internal

failure, high accessibility, versatility, adaptability, the

diminished overhead for clients, the decreased expense

of possession, on-request benefits and so forth. Key to

these issues lies the foundation of a viable load adjusting

calculation. The heap can be CPU load, memory limit,

deferral or system load. Burden adjusting is the way

toward circulating the heap among different hubs of a

conveyed framework to improve both asset use and

employment reaction time while likewise maintaining a

strategic distance from a circumstance where a portion

of the hubs are vigorously stacked while different hubs

are inactive or doing next to no work. Burden adjusting

guarantees that all the processor in the framework or

each hub in the system does around the equivalent

measure of work at any moment of time. This

procedure can be sender started, collector started or

symmetric sort (the blend of sender-started and

recipient started types).The objective is to implement

various dynamic load balancing algorithm such as

Round Robin (RR), Throttled, Equally Spread Current

Execution (ESCE) and Shortest Job First (SJF)

algorithms with some sample data center loads.

Index terms- SJF, ESCE, RR, Throttled

I.INTRODUCTION

Cloud computing is an on interest administration in

which shared assets, data, programming, and

different gadgets are given by the customers

prerequisite at the explicit time. Its a term which is

commonly utilized if there should arise an occurrence

of Web. The entire Web can be seen as a cloud.

Capital and operational expenses can be cut utilizing

distributed computing. Load balancing in cloud

computing frameworks is extremely a test now.

Continuously a conveyed arrangement is required.

Since it isn't in every case basically plausible or cost

effective to keep up at least one inactive

administration similarly as to satisfy the required

requests. Jobs cannot be assigned to fitting servers

and customers independently for proficient burden

adjusting as the cloud is a mind-boggling structure

and segments are available all through a widespread

zone. Here some vulnerability is appended while

occupations are doled out. Cloud computing is

progressively being received by substantial

organizations, just as little and medium estimated

organizations, for "on-request" and "utility figuring",

which holds colossal guarantee for the eventual fate

of administration registering [1].

Fig 1: A cloud is used in network diagrams to depict

the Internet [1]

Virtualization is a key empowering innovation for

distributed computing conditions, which makes it

conceivable to run various working frameworks and

different applications on the equivalent equipment in

the meantime, to give benefits by a virtual unit [2].

Through virtualization innovation, not exclusively

can by and large equipment usage improve and lower

costs for calamity recuperation, yet it can likewise

accomplish programmed checking for all hosts. Be

that as it may, it is extremely hard to relegate an

expansive number of undertakings to dynamic assets

for dispersed registering. There are an assortment of

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 96

variables that may prompt a few hubs in the over-

burden state while others stay in the under load state,

for example, uneven designation of assets, the client

needs changing after some time, recently joining

hubs, and a high probability of disappointment in the

over-burden hubs, and so forth [3– 5]. Load adjusting

is the best method to take care of the above issue in a

distributed computing foundation, which guarantees

that administrations are conveyed straightforwardly

paying little heed to the physical usage and area

inside the "cloud". In ongoing decades, extraordinary

advancement has been accomplished for load

balancing, and a standout amongst the most

encouraging branches is swarmed insight

calculations, for example, insect settlement

streamlining [6– 8], fake honey bee state [9,10],

molecule swarm improvement [11,12], and so on.

Subterranean insect settlement streamlining,

proposed by Marco Dorigo in 1992 [13], is a class of

stochastic advancement algorithms in view of the

actions of an ant colony. Cloud computing is a huge

idea. A considerable lot of the calculations for load

balancing in cloud computing have been proposed. A

portion of those calculations has been outlined in this

work. The entire Web can be considered as a cloud of

numerous connections less an association arranged

administrations. So the distinguishable load

scheduling hypothesis for Wireless systems depicted

in [9] can likewise be connected for mists. The

execution of different calculations have been

considered and compared.

II. LOAD BALANCING

It is a procedure of reassigning the all-out burden to

the individual hubs of the system framework to make

asset usage successful and to improve the reaction

time of the activity, all the while expelling a

condition in which a portion of the hubs are over

stacked while some others are under stacked. A heap

adjusting calculation which is dynamic in nature does

not think about the past state or conduct of the

framework, that is, it relies upon the present conduct

of the framework. The imperative interesting points

while growing such calculation are : estimation of

burden, examination of burden, security of various

framework, execution of framework, association

between the hubs, idea of work to be exchanged,

choosing of hubs furthermore, numerous different

ones [4] . This heap considered can be regarding

CPU load, measure of memory utilized,

postponement or System load. A site or a web-

application can be gotten to by a lot of clients

anytime of time. It ends up troublesome for a web

application to deal with all these client asks for at one

time. It might even outcome in framework

breakdowns. For a site proprietor, whose whole work

is reliant on his entryway, the sinking feeling of site

being down or not available additionally brings lost

potential clients. Here, the heap balancer assumes a

vital job. Cloud Burden adjusting is the way toward

disseminating remaining tasks at hand and figuring

assets crosswise over at least one servers. This sort of

dissemination guarantees most extreme throughput in

least reaction time. The outstanding burden is

isolated among at least two servers, hard drives,

organize interfaces or other figuring assets,

empowering better asset use and framework reaction

time. Along these lines, for a high traffic site,

compelling utilization of cloud load adjusting can

guarantee business coherence. The normal goals of

utilizing load balancers are:

 To keep up framework solidness.

 To improve framework execution.

 To ensure against framework disappointments.

Cloud suppliers like Amazon Web Administrations

(AWS), Microsoft Purplish blue and Google offer

cloud load adjusting to encourage simple dispersion

of outstanding tasks at hand. For ex: AWS offers

Versatile Burden adjusting (ELB) innovation to

appropriate traffic among EC2 examples. The greater

part of the AWS controlled applications have ELBs

introduced as key compositional segment.

How does Load Balancer work?

Here, load refers to not only the site activity but too

incorporates CPU stack, organize stack and memory

capacity of each server. A stack adjusting strategy

makes beyond any doubt that each framework within

the organize has same sum of work at any moment of

time. This implies not one or the other any of them is

unreasonably over-loaded, nor under-utilized. The

stack balancer disperses information depending upon

how active each server or hub is. Within the

nonattendance of a stack balancer, the client must

wait whereas his prepare gets prepared, which may

be as well tiring and demotivating for him. Various

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 97

data like occupations holding up in line, CPU

handling rate, job entry rate etc. are traded between

the processors amid the stack adjusting handle.

Disappointment within the right application of stack

balancers can lead to genuine results, information

getting misplaced being one of them.

Goals of Load balancing

As given in [4], the goals of load balancing are:

 To make strides the execution substantially

 To have a reinforcement arrange in case the

framework falls flat indeed partially

 To keep up the framework stability

 To suit future alteration within the system

Different kinds of Load balancing

Depending on who initiated the process, load

balancing algorithms can be of three categories as

given in [4]:

 Sender Initiated: If the load balancing algorithm

is initialized by the sender.

 Receiver Initiated: If the load balancing

algorithm is initiated by the receiver.

 Symmetric: It is the combination of both sender

initiated and receiver initiated.

Depending on the current state of the system, load

balancing algorithms can be divided into 2 categories

as given in [4]:

 Static: It doesn’t depend on the current state of

the system. Prior knowledge of the system is

needed.

 Dynamic: Decisions on load balancing are based

on current state of the system. No prior

knowledge is needed. So it is better than static

approach.

III. LITERATURE SURVEY

Load balancing assumes a fundamental job in giving

Quality of Service (QoS) ensures in cloud registering,

and it has been producing generous enthusiasm for

the exploration network. There are a lot of

methodologies that have adapted to the heap

adjusting issue in distributed computing. We talk

about the past related work of burden adjusting by

partitioning them into two classes as per the basic

calculation.

The top notch comprises of differing customary

methodologies without using any sort of swarm

insight calculations. Many load balancing approaches

were proposed as of late and each centered around

various angles of calculations and strategies, e.g.,

utilizing a focal burden adjusting approach for virtual

machines [17], the planning methodology on burden

adjusting of virtual machine (VM) assets dependent

on hereditary calculations [18], a mapping

arrangement dependent on multi-asset load adjusting

for virtual machines [19], versatile dispersed

calculation for virtual machines [20], weighted least-

association methodology [21], and two-stage booking

calculations [22]. Also, a few techniques for burden

adjusting were displayed for various cloud

applications, for instance, an administration based

model for extensive scale stockpiling [23],

information focus the executives design [24], and a

heterogeneous cloud [25]. Despite the fact that these

commitments have gained incredible ground in

burden adjusting under distributed computing, it has

a high level of centralization and isn't anything but

difficult to expand. Besides, these displayed

methodologies did not completely mirror the qualities

of asset hubs and are increasingly reasonable to the

static circumstance of distributed computing.

The inferior contains approaches use swarm

knowledge calculations, for example, subterranean

insect state enhancement [6– 8], fake honey bee state

[9, 10], and molecule swarm streamlining [11, 12],

which is better for the dynamic circumstance of

distributed computing. With self-sorted out conduct,

these social bugs can be imitated all things

considered, or with important changes, to take care of

undifferentiated from issues in distributed computing.

In [6], Nishant, K. et al. proposed a calculation for

burden conveyance of an outstanding burden with an

adjusted methodology of ACO from the point of view

of cloud or matrix organize frameworks. In this

methodology, the ants just refreshed a solitary

outcome set constantly in the procedure, as opposed

to refreshing their own outcome set. In [7], a heap

adjusting system was proposed in light of

subterranean insect state and complex system

hypothesis in an open distributed computing league.

This is the first time that ACO and complex systems

were brought together into burden adjusting in

distributed computing what's more, acquired great

execution. In [8], Mishra, R. et al. gave an answer for

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 98

burden adjusting in the cloud by ACO, to expand or

limit diverse execution parameters, for example, CPU

burden and memory limit. Notwithstanding, few

elements were considered as pheromones to discover

target hubs when utilizing ACO in the over three

methodologies. In [9,10], Sesum-Cavic, V. et al.

exhibited a novel methodology for burden adjusting

dependent on counterfeit honey bee settlement. A

conventional design, named SILBA (self-activity

load adjusting operators), was characterized to bolster

the trading of various calculations through stopping

procedures. Six calculations were connected in this

design and the outcomes exhibited promising

advantages in the Amazon EC2 cloud. In spite of the

fact that SILBA is a decent example, it didn't

consider the lower requests for hub servers in cloud

processing conditions and the dynamic client needs.

Molecule swarm advancement (PSO) was likewise

embraced for burden adjusting in distributed

computing, for example, [11,12]. In [11], it proposed

another assignment planning model to evade the

genuine burden awkwardness issue, with progress of

the standard PSO by presenting a basic change

component and a self-adjusting latency weight

strategy. To take care of the improvement issue of

discrete space in cloud figuring, Feng, X. et al. built a

proper asset assignment show dependent on a discrete

molecule swarm enhancement calculation [12]. The

investigation results demonstrated that the talked

about PSO strategies can improve the use in burden

adjusting of assets yet they may take a lot of time

with a gigantic number of errands. Different

applications and research on burden offsetting with

swarm insight calculations can be found in [26– 33].

Since these calculations were initially intended for

disseminated load adjusting instead of distributed

computing, much work should be done in the event

that we need to apply these calculations into

distributed computing.

IV. LOAD BALANCING ALGORITHMS

A. Equally Spread Current Execution

1. In this algorithm, the Heap Balancer keeps up a

list table of VM's and the quantity of solicitations

presently designated to the VM's. At begin all

VM's have 0 allotments.

2. At the point when a demand to designate another

VM from the Data Center Controller arrives, it

parses the list table also, recognizes the least

stacked VM. In the event that there are more

than one, the principal distinguished is chosen.

3. The Heap Balancer restores the VM ID to the

DataCenterController.

4. The DataCenterController sends the demand to

the VM distinguished by that ID.

5. The DataCenterController tells the Heap

Balancer of the new assignment.

6. The Heap Balancer refreshes the assignment

table augmenting the allotment mean that VM.

7. At the point when the VM wraps up the demand

and DataCenetrController gets the reaction

cloudlet, it tells the Heap Balancer of the VM de-

distribution.

8. The Heap Balancer refreshes the distribution

table by decrementing the assignment mean the

VM one by one.

In Equally Spread Current Execution Algorithm, a

correspondence exist between the heap Balancer and

the Data Center Controller for refreshing the list table

prompting an overhead. Further, this overhead makes

delay in giving reaction the arrived solicitations.

B. Throttled Load Balancing:

1. In this algorithm, the Heap Balancer keeps up an

record table of VM's just as their states

(Accessible/Occupied).

2. At the point when a demand to assign another

VM from the

3. DataCenterController arrives, it parses the record

table

4. from best until the most readily accessible VM is

found.

5. On the off chance that VM is discovered, the

Heap Balancer restores the VM ID to the Data

Center Controller.

6. The DataCenterController send the demand to

the VM recognized by that ID.

7. The DataCenterController informs the Heap

Balancer of the new allotment.

8. The Heap Balancer refreshes the allotment table

by augmenting as needs be.

9. At the point when the VM wraps up the demand

and the Data Center Controller gets the reaction

cloudlet, it advises the Heap Balancer of the VM

de-assignment.

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 99

10. The Heap Balancer de-assign the equivalent VM

whose Id is as of now imparted.

The objective of this algorithm is to find the response

time of every virtual machine as VMs are of different

capacity corresponding to the processing efficiency.

RT= Ft-At+Td

Where RT= Response Time, Ft=Finish Time, At=

Arrival Time, Td= Transmission Delay.

Td= Tl+Tt

Where Tl= Network Latency Time, Tt= Time taken

to transfer the data of single request.

Tt=D/B

B=BT/Nr

Where D= Time to transfer the data of Single

Request, B= Available Bandwidth per user, BT=

Total Bandwidth, Nr=Number of simultaneous user

requests.

C. Round Robin (RR):

It is the least complex calculation that utilizes the

idea of time quantum or cuts. Here, time is separated

into numerous cuts also, every hub is given a specific

time quantum and inside this time quantum the hub

will play out its activities. In this calculation, the

Data Center Controller dole out the demand to a

rundown of VM's on a pivoting premise. The first

demand is allotted to a VM picked haphazardly from

the gathering and afterward Data Center Controller

doles out the resulting demands in a roundabout

request. Once the virtual machine is appointed the

demand, the VM is moved to the end of the rundown.

In this RRLB, there is a superior distribution idea

known as Weighted Round Robin Designation in

which one can dole out a weight to each VM so that

in the event that one VM is prepared to do taking care

of twice as much burden as the other, the incredible

server gets a weight of 2. In such cases, Data Center

Controller will allocate the two solicitations to the

ground-breaking VM for each demand allotted to a

more fragile one. Round Robin Calculation chooses

the heap on arbitrary premise, also, in this manner

prompts a circumstance where a few hubs are

intensely stacked and some are daintily stacked.

However, the calculation is exceptionally

straightforward however there is an extra burden on

the scheduler to choose the extent of quantum [5]. It

has longer normal holding up time, higher setting

switches, higher turnaround time and low throughput.

For instance, if the schedule opening is 100

milliseconds, and job1 takes an absolute time of 250

ms to finish, the round-robin scheduler will suspend

the activity after 100 ms and give other occupations

their time on the CPU. When alternate occupations

have had their equivalent offer (100 ms each), job1

will get another designation of CPU time and the

cycle will rehash. This process proceeds until the

activity completes and needs no more time on the

CPU.

Pseudo Code:

1. CPU scheduler picks the procedure from the

roundabout/prepared line, set a clock to intrude

on it after 1 time cut/ quantum and dispatches it .

2. If process has burst time under 1 time

slice/quantum

 Process will leave the CPU after the finish

 CPU will continue with the following

procedure in the prepared line/round line,

else If process has burst time longer than 1

time cut/quantum

 Timer will be ceased. It cause interference to

the OS.

 Executed procedure is then set at the tail of

the roundabout/ready queue by applying the

setting switch.

D. Shortest Job First

Shortest Job First (SJF) planning is a need and Non-

Preemptive booking. Non-Preemptive methods, when

the allocated time a processor then the processor can't

be taken the other, until the procedure is finished in

the execution. Fundamentally Most limited

Occupation Initially is a dynamic burden adjusting

calculation which handles the procedure with need

premise. It decides the need by checking the span of

the procedure. This calculation appropriates the heap

haphazardly by first checking the extent of the

procedure and after that exchanging the heap to a

Virtual Machine, which is gently stacked. All things

considered that procedure measure is least, this

procedure will get first need to execute whether we

guess most reduced estimated process executes in

least time. The heap balancer spreads the heap on to

various hubs known as spread range technique. The

instrument of most brief Occupation First Calculation

is, to plan the procedure with the most brief time to

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 100

fruition first, hence giving high proficiency and low

turnaround time. Regarding time spent in the present

program (work) started to enter in to the framework

until the procedure is done the framework, need a

brief timeframe. Shortest Job First (SJF) planning

calculation can be said to be ideal with a normal

holding up time is negligible, which improves the

framework execution.

Procedure:

1. Firstly start process, vmloadbalancer keep up the

procedure by need checking the extent of the

procedure and disseminate the heap to the virtual

machine which is daintily stacked.

2. The Vmloadbalancer, first assign exhibit

estimate for example A [10].

3. Take number of components to be embedded.

4. Vmloadbalancer select procedure which load has

briefest blasted time among all heaps will

execute first.

5. On the off chance that in the process any heap

have same blasted time length, at that point

FCFS (First started things out Served) booking

calculation utilized.

6. Make normal holding up time length of next

procedure.

7. Begin with first procedure, choice as above as

most brief burden start things out which has

insignificant normal time and different

procedures are to be in line.

8. Calculate Burst all out number of time.

9. Show the Related qualities.

V. SIMULATION AND RESULT

The current load balancing systems in mists, consider

different parameters like execution, reaction time,

versatility, throughput, asset use, adaptation to non-

critical failure, relocation time and related overhead.

But, for an energy efficient load balancing, metrics

like energy consumption and carbon emission should

also be considered.

Overhead Related- It decides the measure of

overhead included while executing a heap adjusting

calculation. It is made out of overhead because of

development of errands, inter processor and between

procedure correspondence. This ought to be limited

with the goal that a heap adjusting method can work

productively.

Throughput-It is utilized to figure the no. of errands

whose execution has been finished. It ought to be

high to improve the execution of the framework.

Performance-It is utilized to check the proficiency of

the framework. It must be improved at a sensible

expense for example decrease reaction time while

keeping satisfactory postponements. Asset Usage It is

utilized to check the use of assets. It ought to be

enhanced for a proficient burden adjusting.

Scalability- It is the capacity of a calculation to

perform load offsetting for a framework with any

limited number of hubs. This measurement ought to

be improved.

Response Time-It is the measure of time taken to

react by a specific burden adjusting calculation in a

circulated framework. This parameter ought to be

limited.

Fault Tolerance- It is the capacity of a calculation to

perform uniform burden adjusting disregarding

2discretionary hub or connection disappointment.

The heap adjusting ought to be a decent blame

tolerant procedure.

Migration Time-It is an ideal opportunity to move

occupations or assets starting with one hub then onto

the next. It ought to be limited so as to upgrade the

execution of the framework.

Energy Consumption- It decides the vitality

utilization of the considerable number of assets in the

framework. Burden adjusting helps in abstaining

from overheating by adjusting the remaining burden

over every one of the hubs of a cloud, subsequently

decreasing vitality utilization.

Table-1 Region Configuration

Cloud Analyst Region id Users

0 4.4M

1 1.1M

2 2.6M

3 1.3M

4 0.5M

5 0.8M

Table-2 Region Configuration

UB Region

Online Users

during peak

Hours

Online Users during

off-peak hour

1 0 400000 40000

2 1 100000 10000

3 2 250000 25000

4 3 120000 12000

5 4 50000 5000

6 5 70000 7000

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 101

Table-3 DC Configuration

Parameter Value Used

VM Image Size 10000

VM Memory 1024Mb

VM Band 1000

DC-Arch X86

DC-OS Linux

DC-Machine 20

DC-Memory/machine 2048Mb

DC-Strorage 100000Mb

DC-Band 10000

DC-Processors/Machine 4

DC-Speed 100MIPS

DC-Policy Time Shared/Space Shared

DC Grouping UB based 1000

DC Grouping Request based 100

Instruction Length 250

Fig 2 Cloud Analyst GUI using defined configuration

Fig 3: UB Response time using RR Algorithm

Fig 4: DC Processing time using RR Algorithm

Fig 5: UB Response time using ESCE

Fig 6: DC Processing time using ESCE

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 102

Fig 7: UB Response time using Throttled Algorithm

Fig 8: DC Processing time using Throttled Algorithm

Fig 9: UB Response time using SJF Algorithm

Fig 10: DC Processing time using SJF Algorithm

VI. CONCLUSION

Cloud computing has broadly been received by

industry, in spite of the fact that there are many

existing issues like load balancing, Movement of

Virtual Machines, Server Unification and so on.

Which have not been completely tended to. Actually

load balancing is the most focal issue in the

framework i.e., to circulate load balancing in a

proficient way. It too guarantees that each registering

asset is appropriated effectively and reasonably.

Existing load balancing methods/calculations that

have been examined chiefly center on decreasing

overhead, lessening the relocation time and

improving execution and so on. The response time is

a test of each specialist to build up the process that

can increment the throughput in the cloud based part.

The a few techniques need productive scheduling and

load balancing asset distribution methods prompting

expanded operational expense.

We have studied the concepts of Cloud Computing

and Load balancing and studied some existing load

balancing algorithms, which can be applied to clouds

as well. In addition to that, the closed-form solutions

for minimum measurement and reporting time for

single level tree networks with different load

balancing strategies were also studied. The

performance of the strategies such as Throttled,

Round Robin, Equal Spread Current Execution and

Shortest Job First with respect to the response time

and the processing time has been studied. A

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 103

comparison is also made between different strategies

based on the defined parameter.

This experiment has been done with millions of users

in different User Base in different region. Based on

the experiment and comparison it has been observed

that the Equally Spread Current Execution performs

well in the presence of heavy load.

REFERENCE

[1] Velte, A. T., Velte, T. J., Elsenpeter, R. C., &

Elsenpeter, R. C. (2010). Cloud computing: a

practical approach (p. 44). New York: McGraw-

Hill.

[2] Randles, M., Lamb, D., & Taleb-Bendiab, A.

(2010, April). A comparative study into

distributed load balancing algorithms for cloud

computing. In 2010 IEEE 24th International

Conference on Advanced Information

Networking and Applications Workshops (pp.

551-556). IEEE.

[3] A Vouk, M. (2008). Cloud computing–issues,

research and implementations. Journal of

computing and information technology, 16(4),

235-246.

[4] Alakeel, A. M. (2010). A guide to dynamic load

balancing in distributed computer systems.

International Journal of Computer Science and

Information Security, 10(6), 153-160.

[5] http://www.ibm.com/press/us/en/pressrelease/22

613.wss

[6] http://www.amazon.com/gp/browse.html?node=

20159001

[7] Randles, M., Odat, E., Lamb, D., Abu-Rahmeh,

O., & Taleb-Bendiab, A. (2009, December). A

comparative experiment in distributed load

balancing. In 2009 Second International

Conference on Developments in eSystems

Engineering (pp. 258-265). IEEE.

[8] Pacheco, P. (1997). Parallel programming with

MPI. Morgan Kaufmann.

[9] Moges, M., & Robertazzi, T. G. (2006). Wireless

sensor networks: scheduling for measurement

and data reporting. IEEE Transactions on

Aerospace and Electronic Systems, 42(1), 327-

340.

[10] Pallis, G. (2010). Cloud computing: the new

frontier of internet computing. IEEE internet

computing, 14(5), 70-73.

[11] Armbrust M., Fox A., GriffithR., Joseph A. D.,

Katz R., Konwinski A., Lee G., Patterson D.,

Rabkin A., Stocia I. and Zaharia M. (2009)

Above the Clouds: A Berkeley View of Cloud

Computing, EECS Department, University of

California, 1-23.

[12] Bhadani, A., & Chaudhary, S. (2010, January).

Performance evaluation of web servers using

central load balancing policy over virtual

machines on cloud. In Proceedings of the Third

Annual ACM Bangalore Conference (p. 16).

ACM.

[13] Rimal, B. P., Choi, E., & Lumb, I. (2009,

August). A taxonomy and survey of cloud

computing systems. In 2009 Fifth International

Joint Conference on INC, IMS and IDC (pp. 44-

51).

[14] Lee, Y.C.; Zomaya, A.Y.(2010), Energy efficient

utilization of resources in cloud computing

systems.J. Supercomput. 60, 268–280.

[15] Zhang, Q., Cheng, L., & Boutaba, R. (2010).

Cloud computing: state-of-the-art and research

challenges. Journal of internet services and

applications, 1(1), 7-18.

[16] Mahowald, R. P. (2010). Worldwide Software as

a Service 2010-2014 forecast: software will

never be the same. IDC Report, 223628.

[17] Mishra, R., & Jaiswal, A. (2012). Ant colony

optimization: A solution of load balancing in

cloud. International Journal of Web & Semantic

Technology, 3(2), 33.

[18] Caron, E., Rodero-Merino, L., Desprez, F., &

Muresan, A. (2012). Auto-scaling, load

balancing and monitoring in commercial and

open-source clouds (Doctoral dissertation,

INRIA).

[19] Zhang, Z., & Zhang, X. (2010, May). A load

balancing mechanism based on ant colony and

complex network theory in open cloud

computing federation. In 2010 The 2nd

International Conference on Industrial

Mechatronics and Automation (Vol. 2, pp. 240-

243). IEEE.

[20] Hiranwal, S., & Roy, K. C. (2011). Adaptive

round robin scheduling using shortest burst

approach based on smart time slice. International

Journal of Computer Science and

Communication, 2(2), 319-323.

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148779 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 104

[21] Wickremasinghe, B., Calheiros, R. N., & Buyya,

R. (2010, April). Cloudanalyst: A cloudsim-

based visual modeller for analysing cloud

computing environments and applications. In

2010 24th IEEE international conference on

advanced information networking and

applications (pp. 446-452). IEEE.

[22] Wickremasinghe, B., Calheiros, R. N., & Buyya,

R. (2010, April). Cloudanalyst: A cloudsim-

based visual modeller for analysing cloud

computing environments and applications. In

2010 24th IEEE international conference on

advanced information networking and

applications (pp. 446-452). IEEE.

[23] Buyya, R., Ranjan, R., & Calheiros, R. N. (2009,

June). Modeling and simulation of scalable

Cloud computing environments and the

CloudSim toolkit: Challenges and opportunities.

In 2009 international conference on high

performance computing & simulation (pp. 1-11).

IEEE.

[24] Bo, Z.; Ji, G.; Jieqing, A.(2010), Cloud Loading

Balance algorithm. In Proceedings of the 2010

2nd International Conference on Information

Science and Engineering (ICISE), Hangzhou,

China, 4–6; pp. 5001–5004.

[25] Randles, M., Lamb, D., & Taleb-Bendiab, A.

(2010, April). A comparative study into

distributed load balancing algorithms for cloud

computing. In 2010 IEEE 24th International

Conference on Advanced Information

Networking and Applications Workshops (pp.

551-556). IEEE.

[26] Jaspreet, K.(2012), Comparison of load

balancing algorithms in a Cloud. Int. J. Eng.

Res., 2,1169–1173.

[27] Shaveta, N.; Raj, G.(2012), Comparative

Analysis of Load Balancing Algorithms in Cloud

Computing. Int. J. Adv. Res. Comput. Eng.,

120–124.

[28] Nakrani, S., Tovey, C (2004) On honey bees and

dynamic server allocation in Internet hosting

centers. Adapt. Behav. 223–240.

[29] Sivanandam, S.N.; Visalakshi, P. (2009)

Dynamic task scheduling with load balancing

using parallel orthogonal particle swarm

optimisation. Int. J. Bio-Inspired Comput. 276–

286.

[30] Visalakshi, P., Sivanandam, S.N. (2009),

Dynamic Task Scheduling with Load Balancing

using Hybrid Particle Swarm Optimization. Int.

J. Open Probl. Compt. Math. 475–488.

[31] Ludwig, S.A., Moallem, A. (2011) Swarm

intelligence approaches for grid load balancing.

J. Grid Comput,279–301.

[32] Ali, A., Belal, M.A., al-Zoubi, M.B. (2010) Load

Balancing of Distributed Systems Based on

Multiple Ant Colonies Optimization. Am. J.

Appl. Sci., 433–438.

[33] Liu, L., & Feng, G. (2005, August). A novel ant

colony based QoS-aware routing algorithm for

MANETs. In International Conference on

Natural Computation (pp. 457-466). Springer,

Berlin, Heidelberg.

[34] Calheiros, R. N., Ranjan, R., Beloglazov, A., De

Rose, C. A., & Buyya, R. (2011). CloudSim: a

toolkit for modeling and simulation of cloud

computing environments and evaluation of

resource provisioning algorithms. Software:

Practice and experience, 41(1), 23-50.

