
© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 121

Software Architectural Styles in the Internet of Things

Medida Jayapal
1
, Dr V.S Giridhar Akula

2

1
Scholar, CSE, SSSUTMS -Sehore, MP

2
Supervisior, Professor & Principal, BSIT, Hyderabad

Abstract- Internet of Things (IoT) is a developing and

testing field for analysts. IoT is a system of general

objects which are embedded with technologies that

communicate and interface inside themselves and

external environment. This thus gives insight to the

objects to make individuals life agreeable. Software

architectural styles are a labelled arrangement of design

choices that have demonstrated to evoke quality

attribute benefits given the correct setting and are

viewed as the initial phase in designing architecture for

a software system. In any case, over the span of this

examination it has turned out to be certain that the

term Internet of Things isn't sufficient to give a decision

to the impacts of software architectural styles. The

investigation itself gives a rundown of essential IoT

related variables while picking a software architectural

style, which can be utilized as a reason for future IoT

ventures and reference architectures. This paper

contains the mapping of software architectural styles to

the IoT classes displayed in the past chapter and

analyses the consequences for the quality attributes

portrayed. The paper will start off by mentioning which

software architectural styles will be considered and how

they will be evaluated. Utilizing this information, a

mapping and analysis is exhibited which depicts the

best software architectural styles to use as starting

focuses for architecture in the diverse IoT classes.

1. INTRODUCTION

A software architectural style is a labelled set of

components and connectors, and a set of constraints

on how they can interact [GS94]. These constraints

can be topological, for example not allowing cycles,

or it can regard execution semantics. The latter

alludes to the meaning of such an interaction between

two components, which could be a method call or a

notification for example. All styles accompany trade-

offs, unequivocally mentioning which quality

attributes are gained and which are given away,

anyway this also relies upon the context of the system

to be fabricated.

2. SOFTWARE ARCHITECTURAL STYLES AND

EVALUATION

The software architectural styles that will be

considered in this thesis are Client-Server, Peer-to-

Peer, Pipes-and-Filters, Event-Based, Publish-

Subscribe, Service-Oriented, REST, Layered and

Microkernel. There are different styles that exist,

anyway these are the absolute most common and

very much archived ones. In case the reader is not

familiar with these styles, a description is given.

There are a number of Software Architecture

Evaluation Methods that can be utilized to evaluate

software architectures for their satisfaction of quality

attribute necessities. In short, these evaluation

techniques are meant to be utilized at a later stage in

the structure procedure where more information is

required about the system to be assembled. Be that as

it may, in this thesis we analyze the absolute initial

step, namely which style to pick, in the structure

phase. For this analysis it is only necessary to realize

how quality attributes will be evaluated in this

analysis. For the mapping we will distinguish what

the quality attribute necessities are for each class. The

architectural styles give variations in how these

prerequisites are satisfied by the architecture, which

will allow us to compare them with each other.

1. Interoperability: For interoperability the

necessities could either be primary or secondary..

2. Evolvability: Evolvability is about decreasing

the expense of change to the system. For each

class of solution we will indicate a portion of the

conceivable changes to happen

3. Performance: We will consider latency,

throughput, power consumption/vitality

proficiency, bandwidth effectiveness and

scalability as characteristics that characterize

performance in the IoT. These will all be

affected by the decision of architectural style.

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 122

Latency can be measured by the number of

jumps expected to reach the destination.

4. Availability: We can make an estimation of how

much impact a solitary device being unavailable

could be. We can also distinguish single-

purposes of failure inalienable in the classes and

their goals.

5. Security: Security is always a priority. For this

reason we won't make an estimate on the

prerequisite for this attribute, anyway we will

allude to it later to check whether the decision of

architectural style has an impact.

6. Privacy: A few solutions, similar to the ones that

contain collective open data, have to a lesser

degree a privacy prerequisite than different

systems.

3 MAPPING

This section gives a format which the mapping will

be performed and the actual mapping itself. This will

guarantee that the analysis can be done in a

systematic way, as well as making sure that all

conceivable outcomes have been considered. Coming

up next is the format that was utilized:

 For each category:

-Description

 For each class:

-Description – Functional Requirement(s)

-Quality Attribute Specifications

 For each style:

-Description

-Quality Attribute Effects – Verdict

This means that for each of the four categories we

will take a gander at the classes and what the impacts

of software architectural styles are on them. While

this paper centers around quality attributes, we will

also list a couple of functional necessities as this will

help improve perspective on what functionality the

system ought to give which can eliminate styles that

are not suitable because their constraints are not

compatible.

The goal is to illustrate a) which styles ought to be

utilized in which kind of scenarios in the IoT and b)

that there is without a doubt a requirement for various

styles and in this way architectures in the IoT, since it

contains such a wide variety of applications. The

second goal supports the claim that there cannot be

solitary nonexclusive reference architecture for the

whole IoT. The remainder of the report contains the

mapping exhibited in this format.

3.1 Integration

The integration category of IoT solution contains

systems with the primary goal of giving

interconnection between numerous IoT solutions

from a variety of vendors. The traditional definition

for interoperability is the ability of a component to

interact with different components or systems. A

report on the IoT done by the McKinsey Global

Institute states that 40 percent of potential value of

the IoT is enabled when integrating different IoT

solutions [Man]. The potential value in this case is

portrayed in economic impact.

There is a major contrast between planning for

interoperability between various advancements and

platforms from the start of a system structure and

attempting to give interoperability between systems

that are already manufactured. The second scenario is

what this category deals with. In this case these

solutions already have their very own architecture

that caters to their particular necessities, which can be

based on many various styles relying upon the

application. In the worst case scenario, there is such

an architecture where no attention has been paid at all

to interoperability.

Figure 1 Integration Category

Figure 1 gives an illustration of this category. The

various solutions that will be interconnected utilizing

this system are delineated as black boxes, since the

details may not always be known and ought to also

not be important. The direction wherein

communication and data stream have been forgotten

about deliberately, as this will be chosen by the

decision of style.

Class A: Location Constrained Heterogeneous

Devices This class contains solutions that give

interoperability between various heterogeneous

devices located in closeness to each other. We make

the principal plan decision by presenting a center

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 123

which acts as a central purpose of communication

between these devices.

Figure 2:Location Constrained Heterogeneous

Devices

The devices and the center point are all located in

nearness to each other, which means that they can

communicate directly to each other or are at least on

the same local network. The user will have the option

to utilize the system via a mobile device, which ought

to have the option to communicate with the system

from inside or anywhere outside the location,

meaning that the center point ought to be connected

to the Internet.

1. Functional Requirements:

 The user can view measured data from

sensors and control actuators inside the

location from one application.

 The user can look over a set of smart

scenarios so as to create an autonomous

smart environment.

 The user can add and expel devices from the

system.

2. Quality Attribute Requirements:

 Interoperability: This is a primary

prerequisite for this class, meaning that we

ought to consider styles that give

interactivity and potentially inherent

interoperability between components.

 Evolvability:

S1: Change to UI application

S2:Change/Addition autonomous behavior

logic

S3: New device

S4: Change in data format of a device

 Performance: Latency relies upon the

combination of devices and the hub, anyway

the performance of devices are the

responsibility of their vendor. The Hub

ought to have the option to handle different

interactions in a second, so throughput ought

to be measured.

 Availability: The hub is a solitary purpose of

error, anyway in the worst case scenario the

users ought to have the option to

communicate with their devices utilizing

their separate applications.

 Security: If the attacker can gain access to

the Hub, it can interact with all devices in

the location. In the event that the attacker

can gain access to a device, they may cause

a denial-of-service by sending different

solicitations to the Hub

 Privacy: The privacy level of the data relies

upon the data being measured by the

outsider devices. In any case, since all

devices are in one location, it is conceivable

to give privacy by picking an architecture

where the data shouldn't be stored on a

shared asset, for example, a Cloud server.

a. Client-Server

In a Client-Server style the client always initiates the

communication with a solicitation to the server,

which answers with a response. This means that the

client has to know the character and network address

of the server and the server has to be a non-

terminating process. Any server can also take the job

of a client to another server; anyway a server may not

be a client to its very own clients. Because of these

constraints, there are two potential topologies

utilizing this style for decomposition.

Figure 3: Client-Server Topology A: Centralized

Figure 3.6 demonstrates the primary topology of

components conceivable with this style. In this

topology there is one central server and various

clients. The clients can be the UI device or the

devices at the location. Notice that each location has

such a structure, which is the reason there are various

instances illustrated. The central component can be

located in the Hub or in a Cloud server, this will be

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 124

discussed later. The second topology is illustrated in

figure 3.7, where the main component also acts as a

client to the numerous devices that presently have the

server job. This topology can also be viewed as a

layered architecture with three layers, presentation,

control and data.

Figure 4: Client-Server Topology B: Hierarchical

It is important to state the contrasts between the two

topologies:

 In topology A, actuators will constantly have to

inquiry to check whether there is a solicitation

from the user to do something. This outcome in

unnecessary solicitations to the server which

increases the workload on the server and in this

manner diminishes performance and scalability.

In topology B, the server sends a solicitation to

the devices only when they are is a need, either

from a user solicitation or logic programmed into

the Hub.

 In Topology B, devices are forced to always be

in an ON state, since they have the server job. It

eliminates the possibility that devices can go into

an OFF (almost off) mode to save vitality and

only start up to update or keep an eye on updates

now and again. This type of behavior is

conceivable in topology An, anyway this may

increase latency as the user would have to wait

for an actuator to start up and send a solicitation

to check whether any commands have been

issued by the user before performing the action

mentioned.

b. Peer-to-Peer

A Peer-to-Peer contains peers that are the two

consumers and makers of data and functionality. In

this sense, a peer is both a client and a server. The

constraints on the peers are that they all give similar

services and use the same communication protocol

[Bas]. This is not a solid match for this class as all

devices give various types of services. Sensors give

data while actuators give functionality.

c. Pipes-and-Filters

The Pipe-and-Filter style is used when a system

needs to perform a progression of transformations on

the information data. The main disadvantage of this

style in this context is that it does not support

interactivity. In this system we have a user interface

yet in addition have interactivity between various

components.

d. Event-Based

In an event-based architecture there are event-

makers, event-consumers and an event bus which

connections the two together. The event-makers push

their events to the event bus and event-consumers can

listen to those events by registering to the event bus.

In this style, the event-consumers know who the

makers are and register to explicit events from

explicit makers. This is not quite the same as the

publish-subscribe style, where the consumer is only

interested in a type of data and not where it came

from

Figure 5: Event-Based Topology

Figure 5 demonstrates the base components expected

to run this class in an event-based architectural style.

The exclamation point means an event has been

created, while a question mark indicates a registration

to an event. In the diagram gave, both the UI and

actuator listen to event E1 by registering for it on the

Event Bus. This means that both must have

knowledge of the existence of that particular sensor

and what sort of event it produces. Once the sensor

creates the E1 event, the Event Bus will tell both the

UI and the actuator

e. Publish-Subscribe

The issue with the Event-Based style is that the

makers do not know the consumer, which in this

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 125

context is necessary if the user wants to address one

of its devices individually. In the Publish-Subscribe

style, the makers and consumers become even less

coupled, where publishers publish a type of data and

subscribers are interested in a type of content and do

not care about the makers of data.

f. Service-Oriented

In the Service-Oriented style, service providers

advertise their functionality to a service registry,

which can be used by service consumers to discover

appropriate services for their needs. Once found,

these service consumers can communicate directly to

the service providers. Any service supplier can be a

service consumer and the other way around. A

common component found in this style is called an

orchestration service, which acts as a service supplier

to a user interface and acts as a service consumer by

utilizing numerous services to reach a goal. The main

goal of this style is considered to be interoperability,

anyway that is because of the way it has been used in

practice, which is to have all services communicate

utilizing one network protocol, for example, SOAP.

This means that there is no inherent complete

interoperability that accompanies SOA; anyway it is

aided by the registry component which gives

discovery, which is one of the tactics for giving

interoperability [Bas].

Figure 6: Service-Oriented Topology

The topology for this system can be viewed in figure

6. Note that the orchestration service can either be

placed in the mobile application, in the Hub or in a

Cloud component. This decision makes a major

distinction for the quality attribute impacts.

1. Orchestration in the mobile device: Having a

smart app on the mobile device that

communicates directly to a registry, can discover

your devices and send messages directly to them

decreases latency as the UI and orchestration

service are co-located, meaning that

communication happens faster and therefore one

network message is eliminated.

2. Orchestration in the hub: This option creates a

separation of concerns between user interface

logic and application logic, which is typical in a

client-server scenario. It increases latency

notwithstanding, since there is an extra layer of

communication that has to go over a network.

Evolvability is increased compared to the main

option since only all hubs should be updated

now.

3. Orchestration in the Cloud: In this option, the

hub is just used as a gateway to the Cloud

component which hosts a central orchestration

service and service registry. This is the type of

architecture the Smart Things solution has,

where all logic is located in the Cloud.

The pattern we are starting to see is that the decision

of centralization versus decentralization makes a

major distinction on the quality attributes regardless

of the initial style picked. Nonetheless, the service-

oriented style is the best decision so far regarding

interoperability and allows us to map the software to

hardware in three distinct ways, which means that it

is more adaptable and can be adjusted to the

requirements of the system to be fabricated. I also

incorporate the discovery and orchestration tactics for

interoperability.

4 IOT SOLUTION CLASSES CONCLUSION

Internet of Things based on an initial set of IoT

solutions. The distinctions and similarities between

solutions were used as a foundation for this analysis.

The subsequent classification tree gives an

illustration of four categories of solutions, each with

a particular way to offer some incentive to the users

of the solutions. The classes gave in this chapter will

be used in the following chapter to analyze the

impact of software architectural styles on quality

attributes in the context of the IoT. This chapter has

given a mapping of software architectural styles to a

set of IoT solution classes. Obviously there is a place

for all styles in the IoT, yet not all styles are a solid

match in each place. We will currently conclude this

chapter with the most important discoveries.

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 126

The Internet of Things and Software Architecture.

After all of the analysis done in this thesis on Internet

of Things and software architectural styles, it turns

out to be clear that the huge contrast that the term

Internet of Things brings to the software architecture

configuration process is the inclusion of two logical

components, which are the sensors and the actuators.

The sensor is a data supplier while the actuators are

data consumers. The details beyond that can be

abstracted from at this degree of analysis. What this

means for the architecture configuration process is

that we should consider sensors and actuators as

separate components from the start, containing the

base logic to perform their main task. The software to

be planned should be deteriorated and mapped to

physical components.

Figure 7: The Internet of Things effect on the

software architecture design process

Figure 7 demonstrates an image of what I consider to

the "Internet of Things trinity". The user in this case

can be a system administrator that configures the

system once and allows the autonomous logic to

perform its tasks, or it very well may be a someone

that actively uses the system. At the focal point of the

trinity is data, which is used as communication

between the three parts of the trinity. Sensors give

data either to users or actuators. Actuators get data

either from sensors or from users. The question of

how this transmission of data is done is what we

attempt to do when planning software architecture

and accordingly picking a starting style. This trinity

alone is insufficient information to recommend an

adequate architecture. The creator has to realize what

the goal of the system is and what the most important

quality attributes are. In the event that data

aggregation is the goal, at that point it may be smarter

to use a Client-Server or Service-Oriented style. In

any case, on the off chance that the goal is to create

autonomous components with low-latency

communication, at that point a Peer-to-Peer or

decentralized Service-Oriented style is the best

decision. The image doesn't give a depiction of

classes An and B, since these are solutions that don't

give sensors and actuators however instead allows

interoperability to happen between solutions or

devices.

Interoperability: Interoperability between solutions in

the IoT can happen by either speaking the same

language or utilizing a mediator. The mediator can be

facilitated by one of the two parties attempting to

communicate or by a third party. Classes An and B

deal with the scenario where a third party is used as

intermediary. Direct communication is best for

performance, anyway since solutions can be from

various vendors the reality of the situation might

prove that this is not feasible contingent upon the

plan decisions made for the two parties. The second

scenario is the place one of the parties has a mediator,

typically the party that wants to "use" the other party,

meaning that it relies upon the response. The last case

is by utilizing a third party mediator that gives an

infrastructure to communication between different

parties. For this case, the best style is the Service-

Oriented style as it gives a way to the parties to

announce themselves as services and portray how

they ought to be summoned. They parties have to

agree to use the same communication protocol and

have to portray their services in the language required

by the third party solution, anyway once this is done

the parties remain totally decoupled from one

another. The third party mediator can use an

orchestration service to content how the different

parties ought to interact. The Service-Oriented style

was made for interoperability [Bas] and it appears in

this analysis. The REST style can be used to give a

uniform interface in anticipation of interoperability

with another system. A genuine example is to put a

REST interface to one of the aggregation classes,

allowing for the data to be used by different systems.

Security and Privacy: It was a troublesome task to

reason about security and privacy during this

analysis. For security, it comes down to freeing assets

at the edge of the network so they could be utilized

for security reasons. Another indicator could be the

number of section focuses an attacker has. For

privacy, it came down to centralization versus

decentralization. On the off chance that it was

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 127

conceivable to keep data locally instead of sending it

to a Cloud, at that point the architecture is inherently

amicable. There are no architectural models for

security [Bas], for example there is no real model for

reasoning about security at the software architecture

level. A paper that portrays reference architecture for

achieving security and privacy in the IoT [Add14]

concludes by saying that the security and privacy of

any system is primarily reliant on the

implementation. The plan tactics for security all have

a great deal to do with implementation, for example,

authorization, encryption, data trustworthiness checks

and availability checks. For this reason I should

conclude that the analysis done in this thesis is at a

significant level where security cannot be reasoned

about properly.

Consumer and Producer When structuring software,

we are accustomed to speculation regarding

consumers and makers of data and functionality. For

a long time it has been that the users of the system

are the only consumers of functionality and the back-

finish of the system is the supplier. Be that as it may,

in the Internet of Things we currently have sensors

and actuators, which also have a task to carry out.

The reason that the Client-Server is recommended as

the best style by and large in this analysis is because

the sensors, actuators and user interface will in

general be on various physical components. This

creates a hierarchy of consumers that utilization

makers, or clients that utilization servers. We have

seen that if the sensor, actuator (and ui in the event

that present) of a system can be located in one

physical component, at that point it is conceivable to

utilize the Peer-to-Peer style, which brings many

advantages. This is because, as characterized in the

style description, a friend must be both consumer and

maker. In any case, on the off chance that this is not

the situation, at that point almost certainly, we will

pick a more centralized style.

Pipes-and-Filter and Event-Based: The analysis

demonstrates that the Pipes-and-Filters style can be

utilized to send data from the sensors to its

destination focuses, increasing performance, network

effectiveness and scalability while lessening

reliability by constantly sending messages without

getting a confirmation that the message has been

gotten. This means that the main component has to a

lesser extent a workload since it doesn't have to send

confirmation messages, meaning less utilization of

assets. The event-based style can be utilized to get

the same trade-off when sending data to UI or

actuators. The added bonus is that this decouples the

event-source from any of the event-processors, which

increases evolvability. It also evacuates the constant

requirement for UI or actuators to have to survey the

server to check whether any changes have happen,

instead they get a notification when this has

happened. This increases scalability as the main

component doesn't have to process the constant

surveying messages. In practice, this would resemble

picking among TCP and UDP. We pick the Client

Server style when we want to be certain that all

messages reach their destination, by getting a

confirmation from the destination for each message

sent. This is analogous to TCP connections. On the

off chance that we don't care about this and simply

want to send messages faster, we use UDP. UPD

doesn't check if all messages arrive at their

destination, which is analogous to the messaging in

Pipes-and-Filters and Event-Based.

Centralization versus Decentralization: We have seen

that in certain scenarios there is no decision however

to have a central Cloud component for all users and

devices. Anyway by and large there is some decision

to be made among centralization and

decentralization. Decentralization, meaning moving

rationale and data to the edge of the network, has the

accompanying impacts:

1. Increase in performance because of less latency,

less throughput prerequisite, Scalability as

central components are less taxed (if there is a

central component).

2. Increase in availability, since any central

components become to a lesser degree a solitary

purpose of failure.

3. Increase in privacy, since data can remain at the

edge of the network.

4. Increase in bandwidth effectiveness, since the

edge devices can perform more tasks without

having to ask a central component, meaning less

communication over the network.

5. Decrease in evolvability, since updates have to

be pushed to edges instead of changed in one

location.

6. Decrease in vitality proficiency, since the edges

have to perform more computations.

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 128

Microkernel: The Microkernel style is utilized to give

customizability to an application. Be that as it may,

by and large this is not helpful and only brings more

complexities with no advantages. For class A it is a

solid match, since only one out of every odd user will

have each compatible device in their smart home or

environment, meaning they can only install the

modules they need. For different classes I couldn't

think about any reason to utilize this class.

Layered style: The layered style can be helpful to

illustrate the decomposition of a system into durable

layers. Be that as it may, not all systems can be

modeled in a layered way [Ric15]. I find that this is

the case for most IoT topologies, as we currently

have two passage focuses into the system, for

example the users and the devices. This makes it hard

to model the system in the constraints of the layered

style, except if you consider users and devices to be

in the same layer, which would not be strong.

Sensors as initiators, actuators as reactors: Allowing

sensors to be the initiating party in communication

allows for more decisions when choosing messaging

patterns. We could pick periodic or sporadic

messaging patterns, which allow for better

optimization to the goal of the system. For real-time

systems we would want to send periodic messages

while for occasion based systems, for example, a

motion detector we want to communicate something

specific only when it matters. Having sensors as

reactors can also be an option, in the case that the

initiating party knows the personality of the sensor

and only needs the value being measured right now

of initiating communication. Actuators are data

consumers, so much of the time it is smarter to

address them when required instead of having them

constantly survey for changes. The decisions are

either to send messages directly to them or utilizing

an occasion based or publish-subscribe mediator.

Software Architectural Styles in the Internet of

Things: The consequences of this analysis

demonstrates that even with the decomposition of the

IoT into various classes, there are as yet a class where

different styles could be picked relying upon the goal

of quality attribute requirements. What this means is

that the expression "Internet of Things" doesn't give

enough information to pick even a starting software

architectural style, which makes it significantly

harder to give reference architecture to the whole

IoT. This doesn't mean that the reference

architectures gave so far are not helpful, anyway

there are more than enough scenarios where they are

not applicable. This whole analysis is based on a set

of IoT solutions that span various application

domains. Be that as it may, we may discover

considerably more IoT classes and various

architectures on the off chance that we expand this

set to incorporate more current solutions. What is

noticeable in this set of IoT solutions is that there are

many sensor-only solutions, where the goal is to give

information to the user. This makes it that centralized

styles give better quality attribute consequences for

average for this data set. As we move towards

including more actuators into solutions, I accept we

will start to build up the requirement for more

decentralized architectures in certain areas.

REFERENCES

[1] 1.PratibhaSingh, Dipesh Sharma &

SonuAgrawal 2011, „A Modern Study of

Bluetooth Wireless Technology‟, International

Journal of Computer Science, Engineering and

Information Technology, vol. 1, no. 3, pp. 55 –

63

[2] Matharu, GS, Upadhyay, P &

ChaudharyMatharu, L 2014, „The Internet of

Things: Challenges & security issues‟,

Proceedings of the International Conference in

Emerging Technologies, 5-6 April 2014, Noida,

India

[3] Shanzhi Chen (2014) – “A Vision of IoT:

Applications, Challenges, and Opportunities with

China Perspective”, Journals & Magazines >

IEEE Internet of Things Journal > Volume: 1

Issue: 4

[4] Conzon, D, Brizzi, P, Kasinathan, C, Pastrone, F,

Pramudianto & Cultrona, P 2015, „Industrial

application development exploiting IoT vision

and model driven programming‟, Proceedings of

18th Conference Innovation in Services,

Networks and Clouds, Feb 02, 2015, Paris,

France

[5] Mustafa S.Khalefa (2015) – “The Internet of

Things Software Architectural Solutions”,

© November 2019 | IJIRT | Volume 6 Issue 6 | ISSN: 2349-6002

IJIRT 148785 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 129

Australian Journal of Basic and Applied

Sciences, 9(33) October 2015, Pages: 271-277

[6] Xiruo Liu (2017) – “A Security Framework for

the Internet of Things in the Future Internet

Architecture”, Future Internet 2017, 9, 27;

doi:10.3390/fi9030027

[7] Mirza Abdur Razzaq (2017) – “Security Issues in

the Internet of Things (IoT): A Comprehensive

Study”, (IJACSA) International Journal of

Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

[8] Chris Echard (2017) – “Ensuring Software

Integrity in IoT Devices”, J Inform Tech Softw

Eng, an open access journal ISSN: 2175-7866,

Volume 7, Issue 5, 1000217

[9] Jasmin Guth (2018) – “A Detailed Analysis of

IoT Platform Architectures: Concepts,

Similarities, and Differences”, pages {81--101},

[10] Hamed Haddadi (2018) – “SIOTOME: An Edge-

ISP Collaborative Architecture for IoT Security”,

1st International Workshop on Security and

Privacy for the Internet-of-Things (IoTSec) 17

April 2018

Jayapal Medida is currently

pursuing Ph.D at Sri Satya Sai

University of Technology &

Medical Sciences Sehore

(M.P), India.

His current research interests

include wireless sensor

networks and internet of things

