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Abstract- Cell discontinuous transmission (DTX) has 

been proposed as a solution to reduce energy 

consumption of cellular networks. This paper 

investigates the impact of network traffic load on 

spectral and energy efficiency of cellular networks with 

DTX. The SINR distribution as a function of traffic 

load is derived firstly. Then sufficient condition for 

ignoring thermal noise and simplifying the SINR 

distribution is investigated. Based on the simplified 

SINR distribution, the network spectral and energy 

efficiency as functions of network traffic load are 

derived. It is shown that the network spectral efficiency 

increases monotonically in traffic load, while the 

optimal network energy efficiency depends on the ratio 

of the sleep-mode power consumption to the active-

mode power consumption of base stations. If the ratio is 

larger than a certain threshold, the network energy 

efficiency increases monotonically with network traffic 

load and is maximized when the network is fully loaded. 

Otherwise, the network energy efficiency firstly 

increases and then decreases in network traffic load. 

The optimal load can be identified with a binary search 

algorithm.  

1. INTRODUCTION 

 

Driven by the increasing usage of smart devices and 

mobile applications, the traffic of cellular networks 

has grown dramatically and this trend would continue 

in the future. It is forecasted that the global mobile 

traffic would increase by nearly tenfold from 2014 to 

2019 [1]. Therefore network densification has been 

proposed to increase the network capacity by 

increasing the reuse of radio resources [2]. However, 

deploying more base stations (BSs) would lead to 

soaring energy consumption, which not only incurs 

severe environmental problems but also increases 

operation cost. It is therefore critical to increase the 

energy efficiency of cellular networks. As indicated 

in [3], the energy consumption of BSs accounts for 

almost 60% of all the energy consumed by cellular 

networks. Different approaches have been proposed 

to reduce the energy consumption of BSs. One is to 

develop low-energyconsuming hardware and the 

other is to operate BSs to traffic demand. The latter is 

motivated by the fact that the existing BSs are 

deployed and operated to cater for the maximum 

traffic demand while the network traffic may vary in 

time [4]. BSs can be switched into lower energy 

consumption sleep mode when there is lower traffic 

demand to save energy. 

  

OBJECTIVE: 

The SINR distribution as a function of traffic load is 

derived firstly. Then sufficient condition for ignoring 

thermal noise and simplifying the SINR distribution 

is investigated. Based on the simplified SINR 

distribution, the network spectral and energy 

efficiency as functions of network traffic load are 

derived. 

It is shown that the network spectral efficiency 

increases monotonically in traffic load, while the 

optimal network energy efficiency depends on the 

ratio of the sleep-mode power consumption to the 

active-mode power consumption of base stations. If 

the ratio is larger than a certain threshold, the 

network energy efficiency increases monotonically 

with network traffic load and is maximized when the 

network is fully loaded. 

Otherwise, the network energy efficiency firstly 

increases and then decreases in network traffic load. 

The optimal load can be identified with a binary 

search algorithm. 

 

2. LITERATURE SURVEY 
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Many research efforts have been devoted to studying 

BS sleeping operations. In [5], the authors studied the 

performance of a real network and proved the energy 

saving potential of dynamic BS on/off operation. The 

impact of BS on/off operation frequency on energy 

savings is investigated in [10] and it is shown that the 

daily traffic pattern plays a central role in the design 

of dynamic BS operation strategy. In [11], a 

theoretical framework for BS energy saving that 

encompasses dynamic BS operation and user 

association is proposed and the optimal user 

association and BS sleeping operation is investigated 

considering both energy saving and flow-level delay. 

In [12], the authors studied the design of energy 

efficient cellular networks through the employment 

of BS sleep mode strategies as well as small cells, 

and investigated the tradeoff issues associated with 

these techniques. A distributed switching-on/off 

based energy saving algorithm is proposed in [4]. 

 

DRAWBACKS: 

 The long-term traffic variation, for which the 

time scale is at level of hours. 

 The average traffic intensity varies from hour to 

hour. 

 Incoming traffic request in certain slots and then 

switched into micro sleep mode during idle slots. 

 

3. PROPOSED SYSTEM: 

 

In this paper, we investigate the impact of traffic load 

on network performance and endeavor to discover the 

explicit relationship between traffic load and spectral 

and energy efficiency of cellular networks using cell 

DTX. 

1. Derive the network SINR distribution while 

considering network traffic load. Then we further 

derive network spectral and energy efficiency. 

2. Present a sufficient condition for a cellular 

network to be interference-limited. 

3. Analyze the impact of network traffic load on 

network spectral and energy efficiency. 

4. Run numerical simulations to further confirm the 

analytic results. 

 

A. Network Model 

In this section, we first describe the system model 

and the necessary assumptions for the performance 

analysis. Then the network traffic load and power 

consumption model are explained. In the end, the 

performance metrics are described. 

We consider the downlink transmission in a network 

where both BSs and users are randomly distributed. 

The network is assumed to be homogeneous in terms 

of both traffic demand and BS distribution. The 

distribution of BSs is modelled with an ergodic PPP 

ΦB with density λB. Note that we consider 

homogeneous networks and the case of 

heterogeneous networks is beyond the scope of this 

paper. Each user is associated to its closest BS. Thus 

the coverage area of each BS can be modelled using 

the Poisson Voronoi Tessellation (PVT) method. Fig. 

1 illustrates an example of such a network. All the 

BSs are assumed to support DTX. The BS stays in 

active mode and transmits when there is any traffic 

request. Otherwise, it switches into sleep mode and 

does not transmit. The universal frequency reuse is 

applied and the system bandwidth is W. The users 

within each cell equally share the resources in an 

orthogonal manner. Only path loss and fast fading are 

considered. The link between a BS and a user is 

modelled as follows:  

Pr = PtCKr−αh = Per −αh, (1)  

where Pr, Pt, C, K, r, and α denote the receive power, 

the transmit power, the antenna gain, the path loss 

constant at unit distance, the distance between the BS 

and the user and the path loss exponent respectively. 

In order to simplify notations, the product PtCK is 

noted as Pe. The random variable h models Rayleigh 

fading, i.g. h ∼ exp(1). Here we assume that the 

signals from both the serving BS and the interfering 

BSs experience Rayleigh fading. The power control 

is out of the scope of this paper and all the active BSs 

are assumed to transmit with the same power Pt. 

Figure 1. Distribution of base stations (BS) and user 

devices (UD) in a cellular network 
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B. Traffic Load Model We consider packet based 

traffic request. The arrival of traffic request is 

modeled as a homogeneous temperal-spatial Poisson 

arrival process with intensity λu(t) packets per second 

per square meter. Note that traffic density λu(t) is 

constant during a short period, like one hour, but it 

may vary during a longer period, like from day time 

to deep in the night, [5], [6]. In this paper, we 

consider network performance during the period that 

λu(t) keeps constant and network performance is 

stationary. For a given BS, its load is defined as the 

percentage of utilized resources to satisfy its traffic 

requests. In order to maximize the available time for 

the sleep mode of cell DTX, it is assumed that the BS 

schedules all the bandwidth to serve its traffic 

requests to minimize its time in data transmission 

mode. Thus the BS load is modeled as the percentage 

of time that the BS is active. It is equivalent to the 

likelihood that the BS is active at any given instant. It 

should be noted that the more users that a BS serves, 

the more time it takes for the BS. Consequently, the 

BS is more likely to be active at any given instant. In 

general, due to the load-coupling among BSs caused 

by mutual interference, it is rather complex to 

identify an explicit relationship between the number 

of users served by a BS and its active probabilities 

[24]. 

In this paper, the coverage area sizes of all BSs 

follow the same distribution and they are on average 

the same [25].Furthermore, the traffic intensity is 

homogeneously distributed across different areas. 

Therefore, we assume that all BSs experience i.i.d 

traffic demands and the active probabilities of all BSs 

at an instant are the same. This active probability is 

used to model network traffic load ρ and also serves 

as an input to evaluate network performance. It is 

equivalent to the percentage of active BSs at a given 

instant, which can be easily measured by the 

network. As each BS independently decides its 

operation mode, the distribution of BSs after BS 

sleeping can be modelled as a thinned PPP Φ˜ a with 

a new BS density λa. The relationship between the 

density of active BSs λa, the density of deployed BSs 

λB and the network load ρ can be expressed as λa = 

ρλB. (4) Remark.  

For a given network topology, which is a realization 

of the PPP, the coverage area sizes of different BSs 

could be different, which leads to asymmetric traffic 

demands in each BS if users select their closest BSs 

as serving BS. Here, the active probability of each 

given BS is approximated with its expectation. As we 

focus on the macroscopic performance of network 

rather than each BS, this approximation is valid. This 

approach has been used and validated with real traffic 

data in [26]. Furthermore, in our numerical 

simulations, each user selects its closest BS as its 

serving BS and different BSs may have asymmetric 

traffic demands. The simulation results are very close 

to the results based on the proposed approximation of 

active probability. 

 

4. SIMULATION RESULTS 

 

Figure 2. Distribution of average link spectral 

efficiency under different network load 

Figure 3. Distribution of optimal traffic load with 

power ratio, α = 4 
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Figure 4. Distribution of average SINR under 

different network load 

Figure 5. Distribution of average network spectral 

efficiency under different network load 

Fig. 2 shows how the average SINR changes as the 

traffic load increases. Firstly, it is also shown that the 

simulation results and the numerical calculation 

results follow the same trend, although there is a 

minor gap between them. The results tell that the 

higher the traffic load is, the lower the average SINR 

is. This is due to the fact as the traffic load increases, 

there will be more active BSs in the network, which 

brings in stronger interference. Therefore the average 

SINR deteriorates. Comparing the results with 

different path loss exponents, we can find that the 

higher the exponent is, the better the SINR 

distribution is. This is due the fact that the relative 

fading between the interference signals and the 

serving signals is more significant in an environment 

with larger path loss exponent. As the link spectral 

efficiency is a monotonically increasing function of 

SINR, the similar results can be found for the link 

spectral efficiency (see Fig. 3). Fig. 4 shows the 

impact of traffic load on network spectral efficiency. 

The vertical axis is normalized with the BS density 

λB. Unlike SINR and link spectral efficiency, the 

network spectral efficiency increases as the network 

traffic load increases. The maximum network spectral 

efficiency can be achieved when the network is fully 

loaded. This is resulted from the fact that as the 

traffic load increases, in spite of the deterioration of 

single link quality, the frequency reuse factor 

increases. The later linearly contributes to the 

increase of network spectral efficiency and 

overcomes the loss resulted from the link quality 

deterioration. 

 Fig. 5 illustrates the change of average energy 

efficiency as the traffic load increases. The vertical 

axis is normalized with the system bandwidth W and 

the power consumption Pa of active BSs. The 

relationship between the average energy efficiency 

and the network traffic load is highly influenced by 

the ratio θ of the sleep-mode power to the active-

mode power. For small ratios, the energy efficiency 

would first increase and then decrease as the traffic 

load increases. There exist a load ρ ∗ that can 

maximize the energy efficiency. The higher the ratio 

is, the higher the optimal load ρ ∗ is. While for large 

ratios the energy efficiency would increases as the 

traffic load increases. The energy efficiency is 

maximized when the network is fully loaded.  

 
Figure 6. Distribution of average energy efficiency 

with traffic load (Simulation result), α = 4 
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5. CONCLUSION 

 

In this paper we have investigated the relationship 

between network performance and network traffic 

load for networks with cell DTX. The network is 

analyzed with theories of stochastic geometry. The 

SINR distribution as a function of traffic load is 

derived firstly and a sufficient condition for the 

networks to be interference-limited is presented. 

Based on the simplified SINR distribution, analytical 

expressions are obtained to describe the impact of the 

network load on the performances, including link 

spectral efficiency, network spectral and energy 

efficiency. It is shown that as the network load 

increases, the average link spectral efficiency 

decreases while the network spectral efficiency 

increases. The network energy efficiency is strictly 

quasi-concave on the network load and the relative 

power consumption in the sleep mode plays a key 

role. For small sleep-mode power consumption, the 

energy efficiency would first increase and then 

decrease as the network load increases. If the sleep-

mode power consumption is larger than a threshold, 

the energy efficiency would monotonically increase 

as the network load increases, and the maximum 

energy efficiency is achieved when the network is 

fully loaded. 

REFERENCES 

 

[1] M. U. Celik, G. Sharma, A. M. Tekalp, and E. 

Saber, “Lossless generalized-LSB data 

embedding,” IEEE Trans. Image Process., vol. 

14, no. 2, pp. 253–266, Feb. 2005.  

[2] M. U. Celik, G. Sharma, and A. M. Tekalp, 

“Lossless watermarking for image 

authentication: A new framework and an 

implementation,” IEEE Trans. Image Process., 

vol. 15, no. 4, pp. 1042–1049, Apr. 2006.  

[3] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su, 

“Reversible data hiding,” IEEE Trans. Circuits 

Syst. Video Technol., vol. 16, no. 3, pp. 354–

362, Mar. 2006.  

[4] X. Li, W. Zhang, X. Gui, and B. Yang, “A novel 

reversible data hiding scheme based on two-

dimensional difference-histogram modification,” 

IEEE Trans. Inf. Forensics Security, vol. 8, no. 

7, pp. 1091–1100, Jul. 2013.  

[5] C. Qin, C.-C.Chang, Y.-H.Huang, and L.-T. 

Liao, “An inpaintingassisted reversible 

steganographic scheme using a histogram 

shifting mechanism,” IEEE Trans. Circuits Syst. 

Video Technol., vol. 23, no. 7, pp. 1109–1118, 

Jul. 2013.  

[6] W.-L. Tai, C.-M.Yeh, and C.-C. Chang, 

“Reversible data hiding based on histogram 

modification of pixel differences,” IEEE Trans. 

Circuits Syst. Video Technol., vol. 19, no. 6, pp. 

906–910, Jun. 2009. 

[7] J. Tian, “Reversible data embedding using a 

difference expansion,” IEEE Trans. Circuits 

Syst. Video Technol., vol. 13, no. 8, pp. 890–

896, Aug. 2003. 

[8] Y. Hu, H.-K. Lee, and J. Li, “DE-based 

reversible data hiding with improved overflow 

location map,” IEEE Trans. Circuits Syst. Video 

Technol., vol. 19, no. 2, pp. 250–260, Feb. 2009.  

[9] X. Li, B. Yang, and T. Zeng, “Efficient 

reversible watermarking based on adaptive 

prediction-error expansion and pixel selection,” 

IEEE Trans. Image Process., vol. 20, no. 12, pp. 

3524–3533, Dec. 2011.  

 


