Analysis of Matlab

Vishal Vaman Mehtre¹, Prakash Sopan Shevkar² ¹Assistant Professor, Department of Electrical Engineering, BVDUCOE, Pune, India ²Student, Department of Electrical Engineering, BVDUCOE, Pune, India

Abstract- This paper gives us the knowledge of basic MATLAB and how to use it, actually it is an iterative program for numerical computation and visualisation.

Index terms-Numerical computation and data visualisation

INTRODUCTION

MATLAB stands for MATRIX LABORATORY we can use this software in many of engineering and science field; it's an iterative program for numerical computation and data visualisation. It is run on UNIX, Macintosh and Windows environment.

It integrates mathematical computing visualisation and a powerful language to provide flexible environment for technical computing.

MATLAB provide an iterative language for solving problems mathematically and visually.

Typically include Numerical computation and algorithm development

- Symbolic computation
- Modelling, simulation & prototyping
- Data analysis
- Engineering graphics

OBJECTIVE OF INVENTION

In a 1970, MATLAB invented by Cleve Molar University of New Mexico. It is first adopted by researcher and practitioner in control engineering.

- How to operate
- Frist we Starting and quitting MATLAB
- Then click on MATLAB icon
- Display window
- Then command window (used to enter command)
- A graphics window (this are used to display plot)
- An edit window (used to create and files)

- Entering commands (name of file without extension, example- Unnayan_Satyam_Parth)
- MATLAB Expo (shows some different type of
- Abort (this are used to abort command in MATLAB, hold down the control key and press C to create a local abort with matlab)
- Semicolon (:)
- Typing % (designated as a comment)
- CLC command (this command used to cleaning the window)
- Help (if you need any help then click on help
- Statement and variable (>> variable=expression)

ARITHMETIC OPERATION 1

- Addition (+) 5+5=10
- Subtraction (-) 5-3=2
- Multiplication (*) 2*3=6
- Right division (/) 20/2=10
- Left division (\) $10\2=2/10=1/5$
- Exponential (^) 3^4=81

A. Elementary maths built in function

For performing a computation, MATLAB contains a number of functions along with trigonometry functions

- Some common functions are
- abs(x): computes the value of x
- sqrt(x): computes the value of square root of x
- round(x): round x to nearest number
- fix(x): round x to nearest towards '0
- floor(x): round x nearest to $-\infty$
- ceil(x): round x nearest to ∞
- sign(x) : x>0 value =-1, x=1 value = 1
- rem(x,y):modulus function
- exp(x): computes e^x
- log(x): computes lnx

- $\log_{10} x$: log of base 10
- A. Arrays
- Those no. arranged in rows or columns
- 1D array is a row or a column of no.
- 2D array has a set of no. arranged in rows and columns
- Operation is performed by element by element.
- B. Row Vector
- We use space or comma between the elements inside the square bracket

$$x = [7,-1,2,-5,-8]$$

 $y = [7, 1, 2, 5, 8]$

B. Column vector

• We use semicolon between the elements.

$$x = [1; -2; 3;$$

B.Polynomials

• Function of a single variable

$$f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x^1 + a_n$$
 where x is a variable a_0 , a_1 , are coefficient

Degree of polynomials equals largest of exponent

Represented by vector in Polynomials.

2. How to enter the polynomials

$$5s^{4+}7s^3 + 2s^2 - 6s + 2$$

Enter in matlab

$$>> x[5702-62]$$

- Its needed to enter the coefficient of the terms
- Contains function that performs polynomials multiplication and division
- 3.
- Conv(a,b)
- Deconv(n,d)
- Root(a)
- Poly(r)

Output of the program is a row vector which contains the polynomial coefficient.

Examples:

4. Determine the value of x, y, z for the following set of linear algebraic equation.

$$X_2 - 3x_3 = -5$$

 $2x_1 + 3x_0 - x_3 = 7$
 $4x_1 + 5x_2 - 2x_3 = 10$

AX=B

A'AX=A'B IX =A'B X=A'B >>A = [0 1 -3; 2 3 -1; 4 5 -2] >>B = [-5; 7; 10] >>X = inv(A) * B

X=-1.0000 4.0000 3.0000 Check = A* X >>Check = -5 7 10 % alt method >> X = A/B X=-1

4

3

Control Structures

- For the designing of control systems MATLAB has an extensive sets of function.
- They use matrix, root determination model conversion and plotting of computer function
- Found in MATLAB's control system toolbox
- Uses models in the form of transfer function or state-space equation.

Transfer Function

Expressed as a ratio of two polynomials in linear time invariant system

$$H(s) \underbrace{\begin{array}{l} b_0 s^n + b_1 s^{n-1} + ... + b_{n-1} s + b_n \\ A_0 s^m + a_1 s^{m-1} + ... + a_{m-1} s + a_m \end{array} }_{A_0 s^m + a_1 s^{m-1} + ... + a_{m-1} s + a_m}$$

© December 2019 | IJIRT | Volume 6 Issue 7 | ISSN: 2349-6002

Numerator and denominator of a transfer function are factored into the zero-pole-gain form.

$$H(s) = \underbrace{k^{(s-z_1)(s-z_2)...(s-z_n)}}_{(s-p_1)(s-p_2)(...(S-p_n))}$$

State space model is represented in linear control system(s).

$$X=Ax + Bu$$

 $Y=Cx + Du$

The Laplace transform used to find the transform of time function

6. Used to obtain the partial-fraction expansion of the ratio of two polynomials B(s)/A(s) as following:

$$B(s) = num = b (1) s^{n} + b (2) s^{(n-1)} + ... + b (n)$$

Where a $(1) \neq 0$

Num and dem are row vectors

Num= [b(1)b(2)...b(n)]

Den =
$$[a(1) a(2) ... a(n)]$$

CONCLUSION

In the last we can say that with the help of basic Matlab we can solve too many complicated trigonometric functions. With the help of array we can solve a complicated function.

ACKNOWLEDGEMENT

We would like to express our special thanks of gratefulness to Dr. D.S. Bankar, eHad, Dpartment of electrical engineering for their able guidance and support for completing my research paper. I would also like to thank the faculty members of the department of electrical engineering who helped us with extended support

REFERENCES

- [1] J.S. Chitode, "Computational techniques, Technical publication, (2001)
- [2] M.K. Jain / S.R.K. Iyangar / R. K. Jain, "Numerical Methods For Scientific and Engineering Computations", 2008, NewDelhi.
- [3] S.S. Sastry 5 th edition, "Introductory Methods of Numerical Analysis", (2012)

- [4] J.J. Corliss "Note on an Extension of Lagrange's Interpolation", American Statistical Association", Jester 45(2), 106-107,1938
- [5] Ramchandran, "Numerical Methods with Programs in C and C++ T", "Veerarajan and T". "Tata McGraw Hill Publication", (2015).
- [6] Ashok N. Kamthe, by "Programming with ANSI and Turbo C", Pearson