
© December 2019 | IJIRT | Volume 6 Issue 7 | ISSN: 2349-6002

IJIRT 148851 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 88

Function Overloading Implementation in C++ A Static

Type of Polymorphism

Vishal V. Mehtre
1
, Harshdeep

2

1
Assistant Professor, Department of Electrical, Engineering Bharati Vidyapeeth Deemed University

College of Engineering, Pune, India
2
Department of Electrical Engineering, Bharati Vidyapeeth Deemed University, College of Engineering,

Pune, India

Abstract- In this article the function overloading in

object oriented programming is elaborated and how

they are implemented in C++. The language supports a

variety of programming styles. Here we are describing

the polymorphism and its types in brief. The main

stress is given on the function overloading

implementation styles in the language. The polymorphic

nature of languages has advantages like that we can add

new code without requiring changes to the other classes

and interfaces (in Java language) are easily

implemented. In this technique, the run-time overhead

is also introduced in dynamic binding which increases

the execution time of the software. But there are no

such types of overheads in this static type of

polymorphism because everything is resolved at the

time of compile time. Polymorphism; Function

Overloading; Static Polymorphism; Overloading;

Compile Time Polymorphism

Index terms- Polymorphism, Overloading, Static,

Compile time

INTRODUCTION

The word polymorphism is used in coding. It has the

origin from Ancient Greek words. Here Poly means

many and morph means form. Basically it is the

ability to assume several different forms. It is used in

Chemistry as the same. In Microbiology (the branch

of biology that studies microorganisms and their

effects on humans), polymorphism word is used, it

means the ability of some bacteria to alter their shape

or size in response to environmental conditions.

In Cytology (a branch of Biology concerned with the

structure and function of plant and animal cells),

polymorphism means variability in the size and shape

of cells and/or their nuclei. The taxonomy of the

function overloading is shown in the Fig. 1.

STATIC POLYMORPHISM

Function Overloading

C++ allows specification of more than one function

of the same name in the same scope. These are called

overloaded functions and are described in detail in

Overloading. Overloaded functions enable

programmers to supply different semantics for a

function, depending on the types and number of

arguments.

Operator Overloading

It is ad-hoc type of polymorphism. It allows the

programmer to redefine how standard operators work

with class objects (Class - user-defined data type). [1]

We always consider these two things – first is the

overloaded operators for classes should behave like

operators for built-in types and the overloaded

operators should have the same semantics as their

built-in counterparts.

DYNAMIC POLYMORPHISM

The polymorphism exhibited at run time is called

dynamic (run- time determination) polymorphism.

© December 2019 | IJIRT | Volume 6 Issue 7 | ISSN: 2349-6002

IJIRT 148851 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 89

What makes more sense is to use run-time binding

where the decision about which version of the

method to invoke is delayed until runtime.

In case of static polymorphism, the compiler resolves

which function to call at the compile time. But in the

case of dynamic polymorphism, this decision is

delayed until the runtime.

Virtual Function

It is a dynamic polymorphism a virtual function is a

member function that you expect to be redefined in

derived classes. When you refer to a derived class

object using a pointer or a reference to the base class,

you can call a virtual function for that object and

execute the derived class’s version of the function.

Virtual functions ensure that the correct function is

called for an object, regardless of the expression used

to make the function call. A virtual function is a

function in a base class that forms part of the

interface for a set of derived classes.

It is declared virtual in the base class and may or may

not have a definition in that class. It will have

definitions in one or more of the derived classes.[2]

The purpose of a virtual function is to have one

name, one prototype, and more than one definition so

that the function's behavior can be appropriate for

each of the derived classes.

FUNCTION OVERLOADING

In it the same variable name is used to denote

different functions, and the context is used to decide

which function is denoted by a particular instance of

the name. Function (Method) overloading Rules:

1. All the overloading functions must have the

same function name.

2. The number of arguments may differ.

3. The data types of arguments may differ.

4. The order of arguments may differ.

5. The return type may differ. But only the return

type difference is not counted in the function

overloading. (see the note)

Note: Methods (or functions) with difference in only

the return type of prototypes and same in both the

number of arguments and as well as the data types of

arguments, are treated same by the compiler because

the compiler considers only the parameters. The

following prototypes are treated same by the

compiler. [5]

int sum (int a, float b); int sum (int a, int b); float sum

(int a, int b);

Function overloading a method (function) allows you

to create functions of the same name that take

different data types of arguments or different in

number of arguments or different in the sequence of

arguments as follows:

a. Methods (or functions) with difference in the

data type of arguments of prototypes.

int sum (int a, int b);

b. Methods (or functions) with difference in the

number of arguments of prototypes.

int sum (int a, int b);

int sum (int a, int b, int c);

c. Methods (or functions) with difference in the

sequence of arguments of prototypes.

int sum (int a, float b);

int sum (float a, int a);

The function overloading is further explored in the

following subsections.

Simple Function Overloading

Constructors are the special type of member

functions of a class. These are called special because

of the following properties: o A constructor’s name

is same as the name of the class, concerned.

 These do not have a return value. o These are

called automatically when an object of the class

is created.

 These are always declared in the public section

of the class.

 These are used to initialize the area fields for the

concerned objects.

Other properties are same as of the normal functions

or member functions of a class have. So these are

also overloaded as the other functions. [7]

Function Overriding

The function overriding takes place in inheritance (an

OOPS concept). It allows replacing an inherited

method with a different implementation under the

same name (same prototype). [8] Usually the

overridden function will have the same number,

order, and types of arguments. Since, it is proposed to

be a matching replacement.

Under this concept both the classes (base class and

derived class) have member functions with same

name and arguments under the public access specifier

and inherited the base class publicly. If we create an

© December 2019 | IJIRT | Volume 6 Issue 7 | ISSN: 2349-6002

IJIRT 148851 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 90

object of derived class and write code to access that

member function then, the member function in

derived class is only invoked. [3] Here, the member

function of derived class overrides the member

function of base class. It can be resolved with the

help of scope resolution operator (: :), such as object.

base::function_name (arg1, arg2, …).

Scope-based Function Overloading

Some methods are implemented in different scope

with the same prototype (Function Header). The

scopes cannot overlap with each other. There

semantics may be different but the same prototype.

The type signature may be different. It is shown in

the Fig. 2.

Fig.2. Scope-based Function overriding of two

classes

Template-based Function Overloading

A template function may be overloaded either by

template functions or ordinary functions of its name.

[9] In such situations the overloading resolution is

accomplished as follows: o Call an ordinary function

that has an exact match. o Call a template function

that could be created with an exact match. o Try

normal overloading resolution to ordinary and call

the one that matches.

IMPLEMENTATION

All the implementations were done on the compiler

Microsoft Visual C++ 6.0. The operating system was

Microsoft Windows XP Version 2002 Service Pack

3. The Primary memory (RAM) is of 2 GB. The

processor is Intel(R) Core (TM) 2 Duo CPU E7400

@ 2.80GHz. All the programs are also run on the

freely available online compiler C++ 4.7.2 (gcc-

4.7.2) on ideone.com. It is an online compiler and

debugging tool which allows us to compile and run

code online in more than 40 programming languages.

The web browser, Google Chrome was used to access

the website www.ideone.com.

CONCLUSION & FUTURE SCOPE

This is basically the empirical study of the function

overloading, the C++ programming language

concept. It is the static polymorphism which may

have many variations in the implementation. This

paper is good for the students and C++ language

lovers to understand the function overloading deeply.

In future works we are going to elaborate the

dynamic polymorphism, a powerful mechanism in

the object oriented programming languages like C++.

ACKNOWLEDGMENT

The authors are highly grateful to the anonymous

reviewers who have commented on this paper. Their

detailed and constructive feedback helps a lot in

representing the contents and the presentation of the

paper.

REFERENCES

[1] M. Young, The Technical Writer's Handbook.

Mill Valley, CA: University Science, 1989.

Owen Astrachan, “A Computer Science

Tapestry: Exploring Computer Science with

C++,” McGraw- Hill Science. December 12,

2000.

[2] Lennart Augustsson, “Implementing Haskell

overloading,” FPCA '93: Conference on

Functional Programming Languages and

Computer Architecture, Copenhagen, Denmark.

ACM Press, pp. 341-349, June 1993.

[3] E. Balagurusamy, “Object Oriented

Programming with C++,” Tata McGraw Hill

Education Pvt. Ltd. 2011.

[4] Med Maria Bleker, “About Pleomophism,”

Explore Publication, Inc. 1998.

http://www.pnf.org/compendium/About_Pleomo

rp hism_Bleker. pdf

[5] Luca Cardelli, and Peter Wegner, “On

Understanding Types, Data Abstraction, and

Polymorphism,” Computing Surveys. Volume

17, Number 4, pp. 471-522, 1985.

[6] Mark P. Jones, “Functional Programming with

Overloading and Higher-order Polymorphism,”

© December 2019 | IJIRT | Volume 6 Issue 7 | ISSN: 2349-6002

IJIRT 148851 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 91

J. Jeuring and E. Meijer, editors, Advanced

Functional Programming, LNCS Springer-

Verlag, 925, pp. 97-136, 1995.

[7] Poornachandra Sarang, “Object-Oriented

Programming with C++, “PHI, ISBN: 978-81-

203- 3670-4, 2006.

[8] M. Shields and S. Peyton Jones, “Object-

oriented style overloading for Haskell,”

BABEL’01: Workshop on MultiLanguage

Infrastructure and Interoperability, pp. 1-20,

September 2001.

[9] Cheng Wang and Daqing Hou, “An Empirical

Study of Function Overloading in C++,” 8th

IEEE International Working Conference on

Source Code Analysis and Manipulation, pp.

4756, 2008.

