
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149739 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 615

Utility of MATLAB and usage of backpropogation in

artificial neural network

Amritaticku
1
, DeepikaYadav

2

 1,2
AssistantProfessor, CSE, BSAITM, Faridabad, India

Abstract- The artificial neural network back

propagation algorithm is implemented in Matlab

Language. This implementation is compared with

several other software packages. The effect of reducing

the number of iterations in the performance of the

algorithm is studied. The speed of the back propagation

program, backprop, written in Matlab language is

compared with the speed of several other back

propagation programs which are written in the C

language. The speed of the Matlab program backprop

is, also compared with the C program quickprop which

is a variant of the back propagation algorithm. It is

shown that the Matlab program backprop is about 4.5

to 7 times faster than the C programs.

1. BACKPROPAGATION ALGORITHM USING

MATLAB

This section explains the software package,

backprop, which is written in Matlab language. The

package implements the Back Propagation (BP)

algorithm [RII W861, which is an artificial neural

network algorithm.

There are other software packages which implement

the back propagation algorithm. For example the

Aspirin/MIGRAINES Software Tools [Lei9I] is

intended to be used to investigate different neural

network paradigms. There is also NASA NETS

[Baf89] which is a neural network simulator. It

provides a system for a variety of neural network

configurations which uses generalized delta back

propagation learning method. There are also books

which have implementation of BP algorithm in C

language for example, see [ED90].

Many of these software packages are huge, they need

to be compiled and sometimes difficult to understand.

Modification of these codes requires understanding

the massive amount of source code and additional

low level programming.

The backprop on the other hand is easy to use and

very fast. With the graphical capability of the Matlab

the network parameters can be graphed to see what is

going on inside any specific network. Additions and

modifications to the backprop package are easier and

further research in the area of neural network can be

facilitated.

1.1 WHAT IS MATLAB?

Matlab is commercial software developed by

Mathworks Inc. It is an interactive software package

for scientific and engineering numeric computation

[Inc90]. Matlab has several basic routines which do

matrix arithmetic, plotting etc.

1.2 WHY USE MATLAB?

Matlab is already in use in many institutions. It is

used in research in academia and industry. Prototype

solutions are usually obtained faster in Matlab than

solving, problem from a programming language.

Matlab is fast, because the core routines in Matlab

are fine tuned for different computer architectures.

Following test was made to compare the speed

between Matlab and a program written in C. Since

the back propagation algorithm involves matrix

manipulations the test chosen was matrix multiply.

As the next section shows, Matlab was about 2.5

times faster than a C program both doing matrix

multiply.

Speed Comparison of Matrix Multiply in Matlab and

C

A program in C was written to multiply two matrices

containing double precision numbers. The result of

the multiplication is assigned into a third matrix.

Each matrix contained 500 rows and 500 columns. A

Matlab M file was written to do the same multiply as

C program did. Only the segment of the code which

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149739 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 616

does the multiplication is timed. The test was run on

a Celron1.7 GHz. computer, the result is shown in

Table 1.1. As the table shows Matlab is faster than

the C program by more than a factor of two.

Method Execution Time 500x500 Multiply

C program Matlab 277 seconds

110 seconds

Table 1.1 Speed comparison of matrix multiply in

Matlab and a C program. Matlab runs 2.5 times faster

than the C program.

1.3 BACK PROPAGATION ALGORITHM

The generalized delta rule [RHW86], also known as

back propagation algorithm, is explained here briefly

for feed forward Neural Network (NN). The

explanation here is intended to give an outline of the

process involved in back propagation algorithm.

The NN explained here contains three layers. These

are input, hidden, and output Layers. During the

training phase, the training data is fed into to the

input layer. The delta is propagated to the hidden

layer and then to the output layer. This is called the

forward pass of the back propagation algorithm. In

forward pass, each node in hidden layer gets input

from all the nodes from input layer, which are

multiplied with appropriate weights and then

summed. The output of the hidden node is the

nonlinear transformation of the resulting sum.

Similarly each node in output layer gets input from

all the nodes from hidden layer, which are multiplied

with appropriate weights and then summed. The

output of this node is the non-linear transformation of

the resulting sum.

The output values of the output layer are compared

with the target output values. The target output values

are those that we attempt to teach our network. The

error between actual output values and target output

values is calculated and propagated back toward

hidden layer. This is called the backward pass of the

back propagation algorithm. The error is used to

update the connection strengths between nodes, i.e.

weight matrices between input- hidden layers and

hidden-output layers are updated.

During the testing phase, no learning takes place i.e.,

weight matrices are not changed. Each test vector is

fed into the input layer. The feed forward of the

testing data is similar to the feed forward of the

training data.

1.4 BACKPROP PROGRAM

The backprop program is written in Matlab language.

The program implements the back propagation

algorithm [RHW86]. The algorithms used in the

backprop program involve very few number of

iterations. This is one of the reasons why this

program is so fast. In the next section, an example is

given to see the effect of reducing number of

iterations has on the execution speed of a program. In

Section 1.5 execution speed of the backprop program

in Matlab is compared with the execution speed of a

back propagation program in C.

1. Reducing Number of Iterations Increases

Execution Speed

There are several ways to write a program to

accomplish a given task. The approach or algorithm a

person might take will have a great effect on the

execution s p d of a program. Here, a class

identification problem is stated and then two

solutions are presented. Statement of the problem is,

given a matrix A, find the class to which each column

of the matrix A belongs.

Each column of the matrix A is a vector x which we

want to find to which class this vector belongs. To do

this, for each of these vectors x, we want to find the

distances between the vector x and m other vectors.

These m vectors are the desired vectors representing

class1 through class,. The minimum of the m

distances, comes from a vector representing class,.

The number j is the answer to the column vector x.

So the desired output is a row vector B indicating to

which class each of the vectors in A belongs. Content

of the matrix A is changing, so we need to calculate

the row vector B more than once.

Two solutions are now presented for the above

problem. The first solution will be algorithm 1 and

the second solution will be algorithm 2. Both

algorithms will need as input argument the following

variables:

 variable "A" which contains the matrix A

 variable "Classes" which contains vectors

representing class1 through class,

 variable “nClasses” which contains the number

of classes m

The output of the both algorithms is variable "B"

which will contain the class number of each column

of the variable "A".

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149739 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 617

Figure 1.1 shows several of the variables used in

algorithm 1. Here the variable “A” is made of

columns x1,x2, . . . , xn,. Variable “Classes” is made

of columns c1, c2,… cm which represents class1

through class,. Variable “dist” is a column vector of

size m which will hold the distance of a vector x in A

to each of the m classes in variable “Classes”. The

algorithm 1 is the following:

 for each xi in A where i = 1,. . .,n

- dist(j) = Square Euclidean Distance(x;, cj)

where j = 1,. . . , m

- B(i) = k where dist(k) = min(dist)

Figure 1.2 shows several of the variables used in

algorithm 2. Here the variable A
n
 is also made of

columns x1, x2, . .. ,xn, but we will view it as one

block. Variable “Classes” is made of m column

blocks C1,C2, . . . , Cm, where m is the number of

classes. Each block Cj is the same size as block A.

The block Cj contains n equal columns where n is the

number of columns in A. Each column in block Cj is

cj which represents classj. Variable “dist” is made of

m block columns which will hold the distance of

block A to each of the m blocks in variable

“Classes”. The algorithm 2 is the following:

 Dist(j,:) = Square Euclidean Distance(A, Cj)

where j = l,. . . , m. dist(j,:) refers to row j of dist

matrix.

 B(i) = where dist(k, i) = min(dist(:, i)). dist(:, i)

refers to column i of dist matrix.

Tables 1.2 and 1.3 show the two solutions for the

class identification problem using algorithms 1 and 2.

Note that these solutions are written in Matlab

language. The algorithm 1 used in Table 1.2 is

straight forward. As shown in the next section, the

algorithm 1 contains much more iterations than

algorithm 2. This causing the algorithm 1 to run

slower than the algorithm 2 of Table1.3.

2. Speed Comparison of Algorithm 1 and Algorithm

2

The above algorithms were used to solve the class

identification problem, where the number of classes

was 8. The size of the variables used in algorithms 1

and 2.

Table 1.2 Algorithm 1 is a straight forward method

which solves the class identification problem are

shown in Table

1.4. Note that the amount of memory used by

algorithm 2 (1922 Kbytes) is much greater than the

memory used in algorithm 1 (212 K bytes). However,

as shown below, algorithm 2 is much faster than

algorithm 1. The speed of execution is related to the

number of iterations in the algorithm.

The number of iterations for algorithm 1 is much

greater than the number of iterations for algorithm 2.

In this example, the statement number 8 in

algorithm1 gets executed 24,000

(nCol x nClasses = 3000 x 8) times. Where in

algorithm 2 either statement number 11 or 15 gets

executed only 8 (nClasses = 8) time

Since Matlab is an interpretive language algorithm 1

is much slower than algorithm 2. Table 1.5 shows

that algorithm 2 runs about 23 times faster than

algorithm 1. The test was performed on an Celeron

1.7G.Hz computer. In the next section the speed of

backprop program, written in Matlab, is compared to

the speed of a C program both implementing the back

propagation algorithm [RH W861.

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149739 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 618

3. Table 1.3 Algorithm 2 is another way to solve the

class identification problem. It is faster than

Algorithm 1

Matlab Backprop Speed vs. C Backprop Speed

The back propagation program in Matlab, backprop,

is compared with two other C back propagation

programs fbackprop2 and dbackprop. The backprop

is also compared with the C program quickprop

[Fah88]. The quickprop program is a modification of

a back propagation program which has similar feed

forward and backward routines but in update weight

routine, all the weights are updated as a function of

each weight's current slope, previous slope, and the

size of the last jump. However, if the variable

"ModeSwitchThreshold" in the quickprop program is

set to a big number then all the weight updates are

based on normal gradient descent method i.e. same as

in regular back propagation algorithm. The program

fbackprop is similar to the program dbackprop. The

only difference is that the calculations in fbackprop

are in floats (single precision), where the calculations

in dbackprop are in doubles (double precision). All

the calculations in Matlab program backprop are in

doubles. The calculations in the quickprop program

are in floats.

'I'able 1.4 Size of the variables in algorithms 1 and 2

is shown here. The amount of memory used in

algorithm 1 is 212 Kbytes where algorithm 2 uses

1922 Kbytcs.

In the fbackprop and the dbackprop programs,

weights get updated after every input /output vector

pair. Where the weights in quickprop and backprop

programs get updated after a complete sweep of the

training data. As shown below the backprop program

is faster than all the three C programs.

Table 1.5 Speed of algorithm 1 is compared to the

speed of algorithm 2. Algorithm 2 runs about 23

times faster than algorithm 1.

The neural network, used in our benchmark tests, had

64 input nodes, 16 hidden nodes, and 8 output nodes.

The training data contained 1600 input and output

vector pairs. Each input vector was 64 numbers and

each output vector was 8 numbers. The training time

for 100 sweeps over the training data is measured for

the above programs using a Celeron 1.7G.Hz.

Computer. The results are shown in Table 1.6. As the

table shows, the backprop runs 7.0 times faster than

the C program dbackprop. The backprop runs 4.5

times faster than the C program quickprop.The

training time for the C programs fbackprop4 and

dbackprop is also measured in two other computers.

One of the computers was a Vax 11/780 and the other

Algorithm Execution Time

1 51.22 seconds

2 2.26 seconds

Table 1.6 Speed of the Matlab program backprop is

compared to the speed of C programs fbackprop,

dbackprop and quickprop.

The training time for 100 sweeps over the training

data is measured. The Matlab program backprop runs

7.0 times faster than the C program dbackprop. The

backprop also runs 4.5 times faster than the

quickprop program. Computer was a Zenith 386133

running SCO unix with math coprocessor. Table 1.7

shows the training time for 100 iterations over the

training data. The time taken for the fbackprop

program was less than the dbackprop program in

these computers, however the fbackprop time of the

Celeron 1.7GHz computer was longer the dbackprop

time. So depending on different computer

architectures floating point single precision

calculations are faster than double precision

calculations or vice versa. As it was shown, the

backprop program was fastest among the programs

we considered above. However backprop provides an

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149739 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 619

integrated graphic capability that other programs

lack.

4. Integrated Graphical Capability of the Backprop

Program

The back propagation program backprop is faster

than the C programs considered here. However this is

not the only advantage that this program has over

others. It provides an integrated graphical capability

and an interprative environment that other programs

lack.

Table 1.7 Execution speed of the fbackprop, a single

precision back propagation program, is compared to

the dbackprop a double precision back propagation

program. The training time for 100 sweeps over the

training data is measured on three computers. In the

Celeron 1.7GHz computer double precision program

was faster than the single precision program. In Vax

11/780 and 386 computer the single precision

program is faster than the double precision program.

The execution time of the backprop is included here

for comparison.

In the backprop program, the network parameters can

be easily viewed during program execution. Training

and testing reports can be enabled during training and

statistics such as mean square error, percent correct,

etc. can be collected in report intervals specified by

the user.

Figure 1.3 shows a sample 'mean square error' graph.

Figure 1.4 shows a sample 'percent correct ' graph.

Percent correct refers to the percentage of the input

vectors, in training or testing data, which are

correctly classified. Figure 1.5 shows a sample

'maximum absolute error' graph. Figure 1.6 shows a

sample 'percent bits wrong' graph. Percent bits wrong

refers to the percentage of the output nodes which

were off more than some threshold. Figure 1.7 shows

a sample 'compact graph ' graph. Compact graph is a

graph which contains the above 4 graphs in one

graph. Other graphs can be easily added to the

backprop package. In the next section vie list several

other capabilities of the backprop program.

1.5. OTHER CAPABILITIES OF THE BACKPROP

PACKAGE

So far we have shown that backprop package is fast

and contains several standard graphical capabilities.

Several of the backprop capabilities are:

 Allows a user to specify a weight file for initial

weights to start training.

 Can generate random initial weights for training

and allows the user to save these initial weights

to be used later.

 If the training gets started in wrong initial

weights, the program is easily interrupted and

different set of initial weights is used.

 The result from training a network can be saved

and recalled at a later time.

 Allows further training from where it was last

left off.

1.6. SUMMARY AND CONCLUSIONS

The backprop program is written in Matlab language.

This program implements the back propagation

algorithm [RHW86]. Since Matlab is an interpretive

language the number of iterations in the algorithms

has been reduced. This reduced number of iterations

results in a faster executable program. The backprop

program is faster than the C back propagation

program dbackprop by a factor of 7.0. It is faster than

quickprop [Fah88] program by a factor of 4.5.The

backprop provides other capabilities such as

integrated graphics and interpretive environment

which Matlab offers.

The backprop size is less than a comparative program

in C. It is modular and each individual module can be

viewed as a software Integrated Chip (IC). Each

software IC can be modified as long as the

input/output criteria is met. Additions of other

software ICs are easy to be incorporated into the

backprop package. Further research in the area of

neural network can be facilitated.

Computer Execution

Time for

fbaekprop

seconds

Execution

Time for

Dbackprop

seconds

Execution

Time for

Backprop

seconds

Celeron

1.7GHz Vax

11/780 Zenith

386/33

3,969

69,923

21,795

3,792

73,150

24,523

536

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149739 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 620

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149739 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 621

REFERENCES

[1] [Baf89] Paul T. Baffes. NETS Users's Guide,

Version 2.0 of NETS. Technical Report

[2] JSC-23366, NASA, Software Technology

Branch, Lyndon B. Johnson Space Center,

September 1989.

[3] [ED901 R. C. Eberhart and R. W. Dobbins.

Neuml Network PC Tools, A Practical Guide.

Academic Press, San Diego, California 92101,

1990.

[4] [Fah88] E. Fahlman, Scott. An Empirical Study

of Learning Speed in Back-Propagation

Networks. Technical Report CMU-CS-88-162,

CMU, CMU, September 1988.

[5] [Inc9O] The Math Works Inc. PRO-MATLAB

for Sun Workstations, User's Guide. The Math

Works Inc., January 1990.

[6] [Lei91] Russell R. Leighton. The

Aspirin/MIGRAINES Software Tools, User's

Manual, Release V5.0. Technical Report MP-

91W00050, MITRE Corporation, MITRE

Corporation, December 1991.

[7] [RHW86] D. E. Rumelhart, G. E. Hinton, and R.

J. Williams. Leaning Internal Representaions by

Ewvr Propagation in Rumelhart, D. E. and

McClelland, J. L., Pamllel Distributed

Processing: Explorations in the Microstructure of

Cognition. MIT Press, Cambridge

Massachusette, 1986.

