
© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149871 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 867

Turn antiquated peek and poke interfaces in embedded

module to modern web APIs.

Brijendra Singh

CommScope

Abstract—In Embedded system, peek and poke are the

fundamental command sets available in command line

interface to read or write memory address or hardware

registers. During the early stage of development and

debugging embedded board designs, developers may

need to read (peek) values from hardware and write

(poke) values into its registers or memory address before

developing the driver codes [1]. Most of the times these

command sets are redesigned due to hardware change.

This paper describes the design to turn traditional peek

and poke command sets interface to generic web APIs

which are built upon existing well proven technologies

and network protocols like HTTP and RESTful. This

paper not only describe the overall architecture and flow,

but also defines the methods that extends the peek and

poke capability to work with other on-board peripherals.

Moving to modern web APIs design would open the

prospect to use cloud computing power to peek and poke

directly at hardware level of complex embedded devices

deployed in the field.

Index Terms- embedded system, command line interface,

Hyper Text Transfer Protocol (HTTP),

REpresentational State Transfer (REST), Application

Programming Interface.

I. INTRODUCTION

Designing and development of an embedded systems

are bringing more challenges to the software and

hardware team due to increased complexity.

Hardware and software are getting more sophisticated,

wide-ranging and enhanced network connectivity.

Therefore, developing software features are not only

the key success of the product, also needs a solid

debugging and user interfacing capability. Software

can have Graphical User Interface (GUI) or simple to

full featured Command Line Interface (CLI) tool to

allow interaction with the system [2]. Some CLI

implementations allow hardware level access. This

will help to “peek” run time state of the hardware and

on-board peripherals using “register read” or

configure using “register write” set of operations. This

hardware register level debugging support is not only

critical during the development, it could also be

utilized as a backdoor method of debugging when

system is released in the field.

Conversely, for years accessing these methods are tied

with the specific implementation of embedded

software. These peek and poke methods can provide

great insight of the system’s run time state by dumping

hardware registers details or can tweak state by

changing register values. During development phase,

physically attached debugger tools like In-circuit

emulator (ICE) or JTAG provides various debugging

support. The support includes hardware registers view

window that shows and allows modifying the content

of registers, lists microcontroller operation modes,

system and internal states [3]. In released product,

software provides simple to full featured Command

Line Interface (CLI) with hardware level peek and

poke options. Mostly peek and poke are implemented

to access direct memory addresses or mapped

hardware registers space. Though, this may not work

directly with on-board peripherals connected with

commonly used buses like SPI, and I2C.

Mostly these peek and poke commands are accessed

via local serial console or remote virtual terminal such

as telnet. Traditionally these commands interfaces and

access methods that are designed specific to the

software and hardware designs. As embedded designs

vary widely, CLI associated commands and method to

access may require redesigning due to the change of

environment or to expand the debugging support for

newly added on-board peripherals [4]. Therefore,

designing a generic and scalable framework to

perform peek and poke operations is necessary. This

designing can address following areas like:

1. Adaptability.

2. Scalability.

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149871 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 868

3. Common interface to access all on-board

 peripherals.

4. Platform independent.

With the advancement of the technology and hardware

designs, embedded systems are becoming complex,

powerful and full-blown computing device. This

device can run full featured operating system like

embedded Linux, which includes networking

software, web server, various run time programming

environments and provide various hardware

interfacing features. These networking software

building blocks, allows to transform standard peek and

poke interface to web enabled interface as shown in

the Figure 1:

Figure 1. Peek and poke interface as web APIs

This proposed peek and poke web API interface

design is implemented as a RESTful web services.

REST architecture is the best fit to implement peek

and poke interface due to its stateless and uniform

interface guiding principles [5]. HTTP methods

decides the peek or poke operation, and finally REST

handler carry out read or write operation with the help

of available device drivers in the system.

II. DESIGN

A. Define resources:

There are two resources required for read or write

operations:

• Device (e.g. SRAM, Parallel flash, FPGA, SPI, I2C)

• Address (memory or register)

B. Define endpoints:

This will refer to locate specific device and register

resource using Uniform Resource Identifiers [6].

Resource in REST are always manipulated through the

URI:

/{device}

/{device}/{id}

/{device}/{id}/{address}

/{device}/{id}/{address}/{value}

C. Define uniform interface (HTTP Methods):

To carry out peek and poke operations using standard

HTTP methods GET, POST and PUT will be used on

the resources, identified by URI.

 To peek (read) memory address or device

register, we are going to use GET or POST

method as below:

Example of “Peek” web method:

Read single memory location or register -

GET http://<device-url>/{device}/{id}/{address}

Read multiple resources -

POST http://<device-

url>/{device}/{id}/{address}/{value}

[here {value} will represent how many consecutive

address or registers required to read]

 To poke (write) memory address or device

register, we are going to use PUT method. It is

idempotent method.

Example of “Poke” web method:

PUT http://<device-

url>/{device}/{id}/{address}/{value}

D. Define data representation

For request and response data format, we are going to

use Java Script Object Notation (JSON) data format to

keep implementation lightweight.

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149871 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 869

Figure 2. Sample response JSON data for memory

Peek

E. Define status/error codes

We are going to re-use standard HTTP response status

codes to validate successful execution of peek and

poke operation over web API.

III. IMPLEMENTATION AND TEST MEHOD OF

PEEK AND POKE WEB APIS

Figure 3. Test Board with multiple on-board devices

For testing purpose of the proposed design, a single

board computing module Raspberry PI board has been

used. This board is programmed with latest available

Linux kernel and connected with multiple external

peripherals. To build REST web server Flask micro

web framework written in Python has been used. GET,

POST and PUT handler are implemented to use

underlaying various available drivers like I2C and SPI

to interface with on-board peripherals. Implemented

peek and poke web APIs interface has been tested

using “curl” tool which is installed locally on the test

board.

 TEST 1 - Peek device ID register

(address=0xD0) of SPI-1 device(cs1)

curl --request GET http://localhost:8080/spi/1/208

RESULT - Response JSON data:

{"deviceName":"spi","deviceID":"1","registers":[{"a

ddress":"0xD0","value":"0x60"}]}

 TEST 2 - Peek device ID register(address=0x7)

of I2C-0 device(address=25)

curl --request GET http://localhost:8080/i2c/25/7

RESULT - Response JSON data:

{"deviceName":"i2c","deviceID":"1","registers":[{"a

ddress":"0x19","value":"0x04"}]}

 TEST 3 - Poke (write value=1) in config

register(address=0xF5) on SPI-0 device(cs0)

curl --request PUT http://localhost:8080/spi/0/245/1

RESULT – HTTP 200 OK

IV. CONCLUSION

Peek and poke tools are like Swiss Army knife for

software and hardware engineers while debugging

embedded systems. Either in the lab environment

during development or remotely released device, these

tools are very powerful to provide insight of the

complex system. Accessing and using these tools can

be improved in many ways including one mentioned

in this paper. Using web APIs approach, we can have

advantage of uniformly accessible, adaptable and

scalable debugging feature in variety of complex

embedded systems out in the field.

REFERENCES

[1] "Read and write register values of your device

before a driver is available." 30 July 2001. Agilent

Technologies.

http://literature.cdn.keysight.com/litweb/pdf/5988-

3310EN.pdf. 17 June 2020.

[2] Scott, Dale. "Writing Command Line Interfaces for

Embedded Devices." paguilar.org n.d.: 2.

https://paguilar.org/?page_id=17. 17 June 2020.

[3] Staff, Embedded. "The ten secrets of embedded

debugging." embedded 15 September 2004: 2.

https://www.embedded.com/the-ten-secrets-of-

embedded-debugging/.

© June 2020 | IJIRT | Volume 7 Issue 1 | ISSN: 2349-6002

IJIRT 149871 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 870

[4] X. Guo-ping and T. Dan, "The Design of a

Versatile CLI that Supports Command Set

Dynamically Loading," 2011 Fourth International

Symposium on Computational Intelligence and

Design, Hangzhou, 2011, pp. 91-94, doi:

10.1109/ISCID.2011.124.

[5] Fielding, Roy T. REST APIs must be hypertext-

driven. 20 Oct 2008.

https://roy.gbiv.com/untangled/2008/rest-apis-must-

be-hypertext-driven. 17 June 2020.

[6] restfulapi.net. n.d. https://restfulapi.net/rest-api-

design-tutorial-with-example/#object-model.

