
© July 2020 | IJIRT | Volume 7 Issue 2 | ISSN: 2349-6002 

IJIRT 149933 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 42 

 

Fluid Flows in Forced Convection 

 

 

Author: Pooja V
1
, Yashwanth Balan

2 

1
Department of Computer applications, T. John College, Bangalore-560083, India 

2
Co-Author, Department of Computer Applications, T. John College Bangalore-560083, India 

 

Abstract- The fluid flow equations of a viscous 

incompressible fluid past a thin semi-infinite flat plate 

at a constant wall temperature are derived and 

solutions of these equations are investigated using 

DTM-Pade´ approximation. Velocity and temperature 

profiles are plotted. 

 

Index terms- Forced convection, Thermal Boundary 

Layer, DTM-Pade approximation 

 

1. FORCED CONVECTION 

 

Consider the steady flow of a viscous incompressible 

fluid past a thin semi-infinite flat plate at a constant 

temperature Tw placed along the direction of a 

uniform stream of velocity U∞ and temperature 

T∞[1]. Let the origin of co-ordinates be at the leading 

edge of the plate, the x-axis along the plate and y-axis 

normal to it. Equations for two dimensional, laminar, 

steady boundary layer flow are 
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In the present case, U (x) = U∞ (constant) Thus (1) 

reduces to, 
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With the boundary conditions, 

               (Isothermal) 

  

  
   (Adiabatic)                          (5) 

              

 

2. Integrals of The Thermal Boundary Layer 

Equation with Prandtl Number of The 

Fluid(Pr=1) 

 

A simple integral of the equation (4) can be obtained 

immediately if the frictional heat is neglected and the 

Prandtl number of the fluid is unity. 

 

In such cases the two equations are 
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With the boundary conditions 
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When     thus    
 

 
    (7) becomes identical 

to (6) with boundary conditions if 
    

     
  is replaced 

by 
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 or   (9) 

 

    
     

   
 

  

      ) 

It is known as Crocco’s first integral. We can also 

write this as 
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This shows that the heat-flux and the skin-friction are 

proportional to each other. To get the exact 

relationship between the two, we write the value of 

the local Nusselt number, which is given by 
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Where     
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This is known as Reynold’s Analogy. If the frictional 

heat is not neglected but the wall is insulated then 

another simple integral of (4) is possible again when 

Pr=1. We have T = T (u) then (4) can be written as 
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(13) will be identically satisfied. Thus      ) will 

be the solution of (4) if 
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where the constants of integration vanishes, since at 

        
  

  
       

  

  
   

 

That implies    . Integrating and using the 

boundary condition at infinity That is      and 

    , we obtain     
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This is known as Crocco’s second integral. 

3. Integrals of the Thermal Boundary Layer 

Equation for Arbitrary Values of the Prandtl 

Number(Pr) 

 

For the solution of (4), we shall require the velocity 

distribution which was obtained by Blasius and is as 

follows 
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We have, 
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The function    ) satisfies the above differential 

equation. 

With the boundary conditions 

             

               (17) 

In order to obtain a complete integral of the (4) for an 

isothermal wall, it will be easier to calculate first the 

solution of it when the dissipation term is neglected. 

i.e., the solution of the cooling problem with a 

prescribed value of (Tw-T∞) and then another solution 

when the frictional heat is accounted but the wall is 

adiabatic. i.e.,the problem of plate thermometer. 

Since the (4) is a linear differential equation, to get 

the complete integral, the two solutions may then be 

properly superimposed. 

 

4. SOLUTION OF THE COOLING PROBLEM 

 

Consider (7), 
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With the boundary conditions  

         and 

             (19) 

 

We have  
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Solution of (18) in which θ1 is a solution of the 

similarly variable η only or in other words we look 

for a similar solution of θ1. 

Differentiate (20) w.r.t. x 
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Differentiating (20) w.r.t. y 
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Differentiate (22) w.r.t. y  
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Substituting the values of (15),(21),(22),(23) in (18) 

we get 
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Dividing throughout by
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With the boundary conditions 

                                  (25) 

 From (24) we have, 
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Integrating w.r.t.   we get, 
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Integrating once again w.r.t.   we get, 

     
                

 

Where A is the constant of integration  
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Integrating (27) w.r,t.   from   to   we get 
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Using the first boundary condition, i.e             
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Equating (28) and (29), we get 

 

        )

∫ [     )]  
 

 
   

 
  

∫ [     )]  
 

 
   

 

 

       )  
∫ [     )]  
 

 
   

∫ [     )]  
 

 
   

 

 

When Prandtl number (Pr) of the fluid is unity, the 

above equation becomes 

 

5 RESULTS AND DISCUSSIONS 

The velocity profiles for Pr=1 and temperature profile 

for varying Prandtl number is plotted in graphs 1 and 

2 respectively. 
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Figure 1: Velocity Profile in the laminar boundary 

layer with Pr=1 

 
Figure 2: Temperature Distribution in the laminar 

boundary Layer for different Prandtl Numbers. 

 
Figure 3: Numerical Solution using Runge-kutta 4th 

order. 
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