
© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 204

An Approach to Generics & Collections

Nethravathi H1, Megharaja D S2, Mangesh S Pai3, Syed Asim K4, Rakshitha H J5, Priyanka G M6,

Nikhitha S7
1 Assistant Professor & Head of Department, DVS College of Arts and Science, Shimoga (KAR)

2,3,4,5,6,7 Assistant Professor, DVS College of Arts and Science, Shimoga (KAR)

Abstract - The Java Generics concept can be used only

for storing objects but not for primitive values. It is

possible to create classes, interfaces and methods that

will work in a type - safety manner. The Generics can be

called type erasers since the generic information is

existing only up to compilation, once compilation is done

then all the generic information will be erased.

The Java Collection interface represents the operations

possible on a generic collection, like on a List, Set, Stack,

Queue and Deque. For instance, methods to access the

elements based on their index are available in the Java

Collection interface.

Index Terms - Bounded Type, Collections, Generics,

Hash Se, Maps, Template, Wildcards

INTRODUCTION

The Generics concept is introduced in Java 5.0

Version which is used to achieve generic

programming and resolving the problems of type

safety and need for typecasting. Generics can also be

called as generic parameter types. Using the generics

concept we can achieve compile-time polymorphism.

This generic concept looks like a template concept in

C++. We can apply the generics concept for classes,

interfaces, and for methods.

A collection is a general term that means "a bunch of

objects stored in a structured manner" and it is known

as collection elements. A collection is an object that

holds multiple elements into a single unit. Collections

are used to store data, retrieve, manipulate, and

communicate aggregate data with certain methods

provided.

A Collection mainly contains the following 3 parts:

1. Set of interfaces:

Interfaces allow collections to be manipulated

independently of the details of their representation.

2. Concrete class implementation of the interfaces:

They are reusable.

3. Standard utility methods and algorithms:

These are the methods that perform useful

computations, such as searching and sorting, on

objects that implement collection interfaces.

Advantages of Generics in Java:

1. We can write a method/class/interface once and

use it for any type we want.

2. We can hold only a single type of object in

generics. It does not allow to store other objects.

3. Individual Type Casting is not needed.

4. By using generics, we can implement algorithms

that work on different types of objects and at the

same, they are type-safe too.

5. It is checked at compile time so the problem will

not occur at runtime. The good programming

strategy says it is far better to handle the problem

at compile time than runtime.

Advantages of Java Collection:

1. Reduced programming effort:

By providing useful data structures and algorithms,

2. Increase quality and speed:

Because you're freed from writing hell lot of your own

data structures, you'll have more time to devote to

improving programs' quality and performance.

3. Reduces effort to learn new APIs:

Many APIs naturally take collections on input and

furnish them as output.

4. Reduces effort to design and implement new

APIs:

Designers and implementers do not have to reinvent

the wheel each time they create an API that relies on

collections; instead, they can use standard collection

interfaces.

5. Software reuse:

New data structures that conform to the standard

collection interfaces are by nature reusable. The same

goes for new algorithms that operate on objects that

implement these interfaces.

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 205

Generic Class in Java:

A generic class is a class that can hold any kind of

object. To create a Generic class we have to specify

generic type <T> after the class name.

The syntax is given below.

 class ClassName< T >

 { // members}

Collection Classes (Concrete classes):

We know that we need some concrete collection

classes that implements Collection interfaces. Some of

the classes provide full implementations that can be

used as-is and others are abstract classes, providing

skeletal implementations that are used as starting

points for creating concrete collections.

ArrayList class:

ArrayList class is also concrete class for List interfaces

implementation, in other words it can be treated as

resizable-array implementation of the List interface.

ArrayList supports dynamic arrays that can grow as

needed. Standard Java arrays are of a fixed length.

After arrays are created, they cannot grow or shrink,

which means that you must know in advance how

many elements an array will hold. Array lists are

created with an initial size. When this size is exceeded,

the collection is automatically enlarged. When objects

are removed, the array may be shrunk.

HashSet class:

HashSet extends AbstractSet and implements the Set

interface. It creates a collection that uses a hash table

for storage. Hash table stores information by using a

mechanism called hashing. In hashing, the

informational content of a key is used to determine a

unique value, called its hash code. HashSet is a generic

class that has this declaration:

Map:

A map is an object that stores associations between

keys and values, or key/value pairs. Given a key, you

can find its value. Both keys and values are objects.

The keys must be unique, but the values may be

duplicated.

Generic Interfaces in Java

We can also create a generic interface by specifying

the <T> after the interface name.

Syntax :

interface InterfaceName< T >

 { // members }

Collection Interfaces: Collection interfaces are the

foundation of the Java Collection.

1. Collection interfaces: This interface has methods

to tell us how many elements are in the collection

(size, isEmpty), to check whether a given object

is in the collection (contains), to add and remove

an element from the collection (add, remove), and

to provide an iterator over the collection (iterator).

Collection interface also provides operations

(methods) that work on entire collection –

containsAll, addAll, removeAll, retainAll, clear.

2. List interfaces: List is one of the most used

collection type, the List interface extends the

Collection interface and declares the behavior of

a collection that stores a sequence of elements.

List is an ordered collection and can contain

duplicate elements. You can access any element

from its index. ArrayList and LinkedList are

implementation classes of List interface.

Elements can be inserted or accessed by their

position in the list.

3. Set interfaces: Set is a collection that cannot

contain duplicate elements. The Java platform

contains three general-purpose Set

implementations: HashSet, TreeSet, and

LinkedHashSet. Set interface doesn’t allow

random-access to an element in the Collection.

4. SortedSet interfaces: SortedSet is a Set that

maintains its elements in ascending order.

5. Map interfaces: A Map is an object that maps

unique keys to values. A map cannot contain

duplicate keys in its collection and each key can

map to at most one value. The Java platform

contains three general-purpose Map

implementations: HashMap, TreeMap, and

LinkedHashMap. The basic operations of Map are

put, get, containsKey, containsValue, size, and

isEmpty.

6. SortedMap interfaces: The SortedMap interface

extends Map. It ensures that the entries are

maintained in ascending key.The Java platform

contains three general-purpose Map

implementations: HashMap, TreeMap, and

LinkedHashMap. The basic operations of

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 206

SortedMap are put, get, containsKey,

containsValue, size, and isEmpty.

7. Enumeration interfaces: The Enumeration

interface defines the methods by which you can

enumerate (obtain one at a time) the elements in a

collection of objects. The Enumeration interface

defines the methods by which you can enumerate

the elements in a collection of objects.

Generic Methods in Java:

Generic Method is a method that can take any kind of

parameter. To create the generic method we have to

specify the generic type <T> before the return of the

method.

Syntax :

 < T > returntype methodName(parameters)

 { // statements }

Type Parameters

The type parameters naming conventions are

important to learn generics thoroughly. The common

type parameters are as follows:

1. T - Type

2. E - Element

3. K - Key

4. N - Number

5. V - Value

Sample Generic Program:

public class generics

{

public static void main(String a[])

{

SimpleGen<String, Integer> sample = new

SimpleGen<String, Integer>("JAVA2", 100);

sample.printTypes();

}

}

class SimpleGen<U, V>

{

 private U objUreff;

 private V objVreff;

 public SimpleGen(U objU, V objV)

 {

 this.objUreff = objU;

 this.objVreff = objV;

 }

 public void printTypes()

 {

System.out.println("U Type:

"+this.objUreff.getClass().getName());

System.out.println("V Type:

"+this.objVreff.getClass().getName());

 }

}

Output :

U Type : java.lang.String

V Type : java.lang.Integer

NOTE: Generic programming means reusing the same

code for storing different types of objects.

The wildcard in Java Generics

In generic code, the question mark (?), called

the wildcard, represents an unknown type. The

wildcard can be used in a variety of situations: as the

type of a parameter, field, or local variable;

occasionally as a return type (though it is better

programming practice to be more specific). The

wildcard is never used as a type argument for a generic

method incantation, a generic class instance creation,

or a supertype.

Unbounded Wildcards

The unbounded wildcard type represents the list of an

unknown type such as List<?>. This approach can be

useful in the following scenarios: -

• When the given method is implemented by using

the functionality provided in the Object class.

• When the generic class contains the methods that

don't depend on the type parameter.

Upper Bounded Wildcards in Java

You can use an upper bounded wildcard to relax the

restrictions on a variable. For example, say you want

to write a method that works

on List<Integer>, List<Double>, and List<Number>;

you can achieve this by using an upper bounded

wildcard.

To declare an upper-bounded wildcard, use the

wildcard character (‘?’), followed by

the extends keyword, followed by its upper bound.

Note that, in this context, extends is used in a general

sense to mean either “extends” (as in classes) or

“implements” (as in interfaces).

Unbounded Wildcards in Java generics

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 207

The unbounded wildcard type is specified using the

wildcard character (?), for example, List<?>. This is

called a list of unknown type. There are two scenarios

where an unbounded wildcard is a useful approach: If

you are writing a method that can be implemented

using functionality provided in the Object class.

When the code is using methods in the generic class

that doesn’t depend on the type parameter. For

example, List.size or List.clear. In fact, Class<?> is so

often used because most of the methods in Class<T>

do not depend on T.

Lower Bounded Wildcards in Java

The Upper Bounded Wildcards section shows that an

upper bounded wildcard restricts the unknown type to

be a specific type or a subtype of that type and is

represented using the extends keyword. In a similar

way, a lower bounded wildcard restricts the unknown

type to be a specific type or a supertype of that type.

Generics Restriction

There are some restrictions that needed to remember

while using generics. They involve creating objects of

a type parameter, static members, exceptions and

arrays.

Type Parameters Cannot Be Instantiated

Not possible to create an instance of a type parameter.

// Can’t create an instance of T

class Gen1< T >

{

T b;

Gen1()

{

 b = new T (); // Illegal;

}

}

T does not exist at run time, due to that it is not

possible to create an instance of type parameter.

Restrictions on Static Members

A type parameter can not used by static member of a

class.

class Gen2 < T >

static T o; // No static variable of type T

static T getob() // No static method can use T

{

 return o;

}

static void showob() // Can’t access object of type T

{

 System.out.println(o);

}

}

static generic methods can define their own type

parameters.

Generic Exception Restriction

Generic class cannot extend Throwable, so generic

exception classes cannot be created.

CONCLUSION

Java Generics is a influential addition to the Java

language as it makes the programmer's job easier and

fewer error-prone. Generics impose type correctness at

compile time and, most importantly, enable

implementing generic algorithms without causing any

extra overhead to our applications. Generic code will

be a part of the future for all java programmers.

The Collections Framework gives the programmer a

powerful set of well - engineered solutions to some

programming’s common task. The Collections

Framework is generic, it can be used with type safety,

which further contributes its value.

REFERENCES

[1] https://dotnettutorials.net/lesson/generics-in-java

[2] http://tutorials.jenkov.com/java-collections

[3] https://beginnersbook.com/java-collections-

tutorials

[4] https://www.javatpoint.com/generics-in-java

[5] THE COMPLETE REFERENCE JAVA: Herbert

Schildt, McGraw – Hill, SEVENTH EDITION .

[6] PROGRAMMING WITH JAVA A PRIMER - E.

BALAGURUSWAMY, McGraw – Hill, 4TH

EDITION

