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Abstract - In the present article we provide a new model 

of compact star satisfying the Karmarkar condition. We 

proceed our calculations by assuming a new type of 

metric potential for grr and gtt is obtained from the 

condition of embedding class one. The physical 

parameters are obtained by employing the metric 

potentials to the Einstein’s field equations. Our model is 

free from central singularity and satisfies all the physical 

conditions. We have also investigated equilibrium and 

stability of compact star by several methods. 

 

Index Terms - Class one solution, Compact stars, General 

Relativity, Stability 

 

I.INTRODUCTION 

 

This work is devoted to the study of spherically 

symmetric stellar models of cold stars using 

Karmarkar condition Karmarkar [1] and satisfying 

causality as well all energy conditions. Since the 

seminar paper by Oppenheimer and Snyder [2], most 

of the work dedicated to the problem of general 

relativistic gravitational collapse, deal with 

spherically symmetric fluid distribution.  Exact 

solutions have been taking an important role in 

breaking the mystery of the universe. However, many 

physical equations sometimes cannot solve exactly. In 

the realm of general relativity, compact stars are the 

most fascinating objects we have ever observed. Their 

modeling can be done by exact solution method and 

numerical technique. 

The simplest exact model can be found by using the 

Karmarkar condition. This condition allows that a 4 -

dimensional spacetime can be embedded in 5-

dimensional flat-space called embedding class one. 

However, Pandey & Sh a r ma  [3] shows that to 

become a class one solution, Karmarkar condition 

alone is not sufficient but to satisfy 𝑅2323 ≠ 0 as 

well.   

The embedding problem was first considered by 

Schlai [4], who conjectured that a Riemannian 

manifold w i t h   positive  defined  and  analytic   

metric can  be locally  and  isometrically embedded 

as  a  sub- manifold of an Euclidean  space 𝐸𝑁 . The 

first global isometric embedding theorem of  𝑉𝑛 , 

where n is the dimension of the Riemannian manifold, 

into EN were established by Nash [5] . The relation 

between N and n is that  𝑁 = 𝑛(𝑛 + 1)/2. Recently, 

many researchers have been showing interest in the 

embedding problems to analyze the interior properties 

of compact stars via exact solutions of Einstein’s 

field equations [6-9]. 

The paper is organized as follows: In the next section 

we introduce the notation, description of the fluid 

distribution and Einstein field equations. Section  

III is devoted to the finding of new exact solution. 

Section IV discussed the physical properties of the 

solution and Section V deals with boundary conditions. 

The stability and equilibrium of the solution are discuss 

Section VI. Finally, the conclusion is given in the last 

section. 

II. THE FIELD EQUATIONS 

 

The interior spacetime is assume to be spherically 

symmetric in canonical coordinate given as 

𝑑𝑠2 = 𝑒𝜈𝑑𝑡2 − 𝑒𝜆𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin2 𝜃  𝑑𝜙2) . 

Assuming and anisotropic energy-momentum tensor of 

the form given below: 

𝑇𝜇𝜈 = 𝜌 𝑣𝜇𝑣𝜈 + 𝑝𝑟𝜒𝜇  𝜒𝜈 + 𝑝𝑡(𝑣𝜇  𝑣𝜈 − 𝜒𝜇  𝜒𝜈 − 𝑔𝜇𝜈) , 

where the symbols have their usual meanings. Now, 

the Einstein’s field equations becomes 

8𝜋𝜌 =
1 − 𝑒−𝜆

𝑟2
+

𝜆′ 𝑒−𝜆

𝑟
     

8𝜋𝑝𝑟 =
𝜈 ′ 𝑒−𝜆

𝑟
−

1 − 𝑒−𝜆

𝑟2
 

8𝜋𝑝𝑡 =
𝑒−𝜆

4
(2𝜈 ′′ + 𝜈  ′2  − 𝜈′𝜆′ +

2(𝜈 ′ − 𝜆 ′)

𝑟
) , 

where the primes denotes differentiation with respect 

to the radial coordinate  𝑟. The anisotropy in pressure 

is defined as  Δ = 8𝜋(𝑝𝑡 − 𝑝𝑟). 
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Fig 1. Variation of metric potentials. 

 
Fig 2. Variation of density. 

 

To solve the field equations we are considering 

embedding class one spacetime i.e. the 4-dimensional 

spacetime can be embedded in 5-dimensional flat 

hyperspace. This is possible iff the 4-dimensional 

spacetime satisfies the Karmarkar condition i.e.  

2𝜈 ′′

𝜈 ′
+ 𝜈 ′ =

𝜆′𝑒𝜆

𝑒𝜆 − 1
  . 

Using this condition the final expression for pressure 

anisotropy takes the form 

Δ =
𝜈 ′

4𝑒𝜆
[
2

𝑟
−

𝜆′

𝑒𝜆 − 1
] [

𝜈′𝑒𝜈

2𝑟𝐵2
− 1]  . 

 

III. GENERATING NEW SOLUTION 

 

Assuming a specific form of 𝑔𝑟𝑟  metric potential as 

𝑒𝜆 = 1 + 𝑎𝑟2 sec2(𝑐 + 𝑏𝑟2)  

where  𝑎, 𝑏 and c are arbitrary constants. Using the 

Karmarkar condition the other form of metric function 

becomes 

𝑒𝜈 = [𝐴 +
√𝑎 𝐵

2𝑏
ln {tan (

𝜋

4
+

𝑐 + 𝑏𝑟2

2
)}]

2

  . 

Here, 𝐴 and 𝐵 are constants of integration. 

 

Now the field equations leads to the expressions of 

pressures, density and anisotropy as 

 

 

Fig 3. Variation of pressure. 

 
Fig 4. Variation of pressure anisotropy.  

8𝜋𝜌 =
2𝑎

{2𝑎𝑟2 + cos(2𝑐 + 2𝑏𝑟2) + 1}2
 

                [2𝑎𝑟2 + 4𝑏𝑟2 sin(2𝑐 + 2𝑏𝑟2) 

                +3 cos(2𝑐 + 2𝑏𝑟2) + 3] 

8𝜋𝑝𝑟 =
2𝑎{2𝑎𝑟2 + cos(2𝑐 + 2𝑏𝑟2) + 1}−1

𝑎𝐵{𝑓1(𝑟) − 𝑓2(𝑟)} − 2√𝑎 𝐴𝑏
 

          [𝑏 cos(𝑐 + 𝑏𝑟2) {2√𝑎 𝐴 sec(𝑐 + 𝑏𝑟2) − 4𝐵} 

            +𝑎𝐵{𝑓2(𝑟) − 𝑓1(𝑟)}]  

Δ =
4𝑎𝑟[𝑎 − 𝑏 sin(2𝑐 + 2𝑏𝑟2)]

[2𝑎𝑟2 + cos(2𝑐 + 2𝑏𝑟2) + 1]2
 

         [𝑎𝐵{𝑓1(𝑟) − 𝑓2(𝑟)} − 2√𝑎 𝐴 𝑏]
−1

 

         [𝑎𝐵𝑟{𝑓1(𝑟) − 𝑓2(𝑟)} + 2𝑏 cos(𝑐 + 𝑏𝑟2) 

         {𝐵𝑟 − √𝑎 𝐴 𝑟 sec(𝑐 + 𝑏𝑟2)}] 

8𝜋𝑝𝑡 = 8𝜋𝑝𝑟 + Δ . 

Here 

𝑓1(𝑟) = ln [cos (
𝑐 + 𝑏𝑟2

2
) − sin (

𝑐 + 𝑏𝑟2

2
)] 

𝑓2(𝑟) = ln [cos (
𝑐 + 𝑏𝑟2

2
) + sin (

𝑐 + 𝑏𝑟2

2
)] . 
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Fig 5. Variation of mass function. 

 

Fig 6. Variation of compactness factor. 

 

IV. PHYSICAL PROPERTIES 

 

The solution has to be free from any singularity for a 

compact star configuration. The central pressure and 

density are given as 

8𝜋𝑝𝑟𝑐 = 8𝜋𝑝𝑡𝑐 =
2𝑎{1 + cos 2𝑐}−1

𝑎𝐵{𝑓1(0) − 𝑓2(0)} − 2√𝑎 𝐴𝑏
× 

[𝑏 cos 𝑐  {2√𝑎 𝐴 sec 𝑐 − 4𝐵} + 2𝐵{𝑓2(0) − 𝑓1(0)}] 

8𝜋𝜌 =
6𝑎

1 + cos 2𝑐
> 0     ∀   𝑎 > 0 

This central values are non-zero as long as  𝑎 > 0 and 

doesn’t tends to infinity implying that the solution is 

non-singular. Further, the solution must satisfy the 

Zeldovich’s criterion i.e.  𝑝𝑟𝑐/𝜌𝑐 ≤ 1 for any physical 

matter. The non-singularity and the Zeldovich’s 

condition leads to  

1

2√𝑎 𝑏
[4𝑏 cos 𝑐 − 𝑎𝑓1(0) + 𝑎𝑓2(0)] <

𝐴

𝐵
 

≤
1

2√𝑎 𝑏
[4𝑏 cos 𝑐 + 𝑎𝑓1(0) − 𝑎𝑓2(0)] . 

Now the mass function, compactness and the redshift 

can be found as 

 

Fig 7. Variation of redshift. 

 

Fig 8. Variation of forces in TOV-equation. 

𝑚(𝑟) =
𝑎𝑟3

1 + 2𝑎𝑟2 + cos(𝑐 + 2𝑏𝑟2)
 

𝑢 =
2𝑚(𝑟)

𝑟
=

2𝑎𝑟2

1 + 2𝑎𝑟2 + cos(𝑐 + 2𝑏𝑟2)
 

𝑧(𝑟) = 𝑒−𝜈/2 − 1 

 

V. BOUNDARY CONDITIONS 

 

The interior spacetime has to be match smoothly 

with the exterior Schwarzschild for the continuity 

of the spacetime fabric. The exterior metric is 

takes as 

𝑑𝑠2 = (1 −
2𝑀

𝑟
) 𝑑𝑡2 − (1 −

2𝑀

𝑟
)

−1

𝑑𝑟2 

−𝑟2(𝑑𝜃2 + sin2 𝜃  𝑑𝜙2) 

The two metrics has a boundary at  𝑟 = 𝑅 and after 

matching we get 

𝑒𝜈(𝑅) = 1 −
2𝑀

𝑅
= 𝑒−𝜆(𝑅)  . 

Further, the boundary of a compact star is set when the 

pressures is zero. Using these conditions we get 
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𝐴 =
sec(𝑐 + 𝑏𝑅2)

4𝑏
 √1 −

2𝑀

𝑅
  [4𝑏 cos(𝑐 + 𝑏𝑅2)  

+𝑎𝑓1(𝑅) − 𝑎𝑓2(𝑅)] 

𝐵 =
2√𝑎 𝐴𝑏

4𝑏 cos(𝑐 + 𝑏𝑅2) + 𝑎𝑓1(𝑅) − 𝑎𝑓2(𝑅)
 

𝑎 =
1

𝑅2 sec2(𝑐 + 𝑏𝑅2)
[

1

1 − 2𝑀/𝑅
− 1]  . 

 

Fig 9. Variation of adiabatic index. 

 

Fig 10. Variation of stability factor 

 

VI. STABILITY AND EQUILIBRIUM 

CONDITIONS 

 

The solution to represent a configuration in 

equilibrium, one must satisfy the TOV-equation given 

by  

−
𝜈′

2
 (𝜌 + 𝑝𝑟) −

𝑑𝑝𝑟

𝑑𝑟
+

2Δ

𝑟
= 0  . 

The first term is gravity, second the hydrostatic and the 

last term is anisotropic force. Further, the stability can 

also be seen via two physical parameters, adiabatic 

index [10]  

Γ =
𝜌 + 𝑝𝑟

𝑝𝑟

𝑑𝑝𝑟

𝑑𝜌
  .  

The stability factor 𝑣𝑡
2 − 𝑣𝑟

2, where 𝑣𝑟
2 = 𝑑𝑝𝑟/𝑑𝜌 and 

𝑣𝑡
2 = 𝑑𝑝𝑡/𝑑𝜌, the speed sounds. For stability from 

gravitation collapse, Γ > 4/3 for positive anisotropy 

[11] and the stability factor must lie within −1 and 0 

[12]. Further, the stellar system must also be stable 

under radial perturbations. This happens only if the 

mass is an increasing function its central density 

or   
𝑑𝑀

𝑑𝜌𝑐
> 0 [13,14]. 

 

Fig 11. Variation of speed of sound. 

 

 

Fig 12. Variation of mass in central density. 

The expression for mass is given by 

𝑀 =
4𝜋𝜌𝑐𝑅3(1 + cos 2𝑐)/3

1 +
8𝜋

3
𝜌𝑐𝑅2(1 + cos 2𝑐) + cos(2𝑐 + 2𝑏𝑅2)

  . 

 

VII. CONCLUSION 

 

We have presented a model of compact star via an 

exact solution method. This solution was tested 

through various physical conditions and found to 

satisfy all the physically acceptability criteria. The 

matching of the interior metric with the exterior 

vacuum can be seen in Fig. 1. The variation of density 

and pressures are shown in Figs. 2 and 3. From these 

figures it is clear that the central values are not infinite 
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i.e. non-singular. The pressure anisotropy variation in 

provided in Fig. 4. The central region of the stellar 

system has vanishing anisotropy i.e. 𝑝𝑟(0) = 𝑝𝑡(0). 

The mass function trend is given in Fig. 5 showing an 

increasing function of the radial coordinate. The 

compactness factor is given in Fig. 6 where one can 

see the surface value is less than 8/9. This means that 

the solution fulfills the Buchdahl limit hence free from 

gravitational collapse. The surface redshift can be seen 

from Fig. 7. The equilibrium of the system can be seen 

in Fig. 8 where all the force components are balanced 

at the interior. Further, the central value of the 

adiabatic index is clearly greater than 4/3 (Fig. 9), 

implying that the system is stable under perturbations. 

This claim is further strengthen by fulfilling the Abreu 

et al. criterion where the stability lies within −1 and 0, 

Fig. 10. The satisfaction of causality is a must for all 

physically acceptable systems. This model does satisfy 

the causality condition as the speed of sound is sub-

luminal (Fig. 11). Lastly, the solution must also test its 

stability under density perturbation. The static stability 

criterion requires the mass as an increasing function of 

its central density. Figure 12 shows the satisfaction of 

static stability criterion. All the graphs were generated 

for two compact stars, PSR J1614-2230 (𝑎 =

0.002533/𝑘𝑚2, 0.0015/𝑘𝑚2, 𝑐 = 0.8) and PSR 

J1903+327 (𝑎 = 0.0018513/𝑘𝑚2, 0.001/𝑘𝑚2, 𝑐 =

0.9). Since this solution is compatible with observed 

compact stars, it might have astrophysical applications 

in future. 
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